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1
Introduction

1.1 Motivation

Endovascular aneurysm repair (EVAR) is a technique which uses stent grafts to treat
aortic aneurysms in patients at risk of aneurysm rupture. Although this technique
has been shown to be successful on the short term, the long term results are less
optimistic due to failure of the stent graft. The pulsating blood flow applies stresses
and strains to the stent graft, which can cause problems such as breakage, leakage,
and migration.

Therefore it is important to gain more insight into the in vivo motion behavior of
these devices. If we know more about the motion patterns in well-behaved stent grafts
as well as devices with problems, we expect to be better able to distinguish between
these type of behaviors. We hope that these insights will enable us to detect stent-
related problems and might even be used to predict problems beforehand. Ultimately,
these insights may help in designing the next generation stent grafts.

Several patients were asked to participate in this study by having an ECG-gated
CT scan instead of a regular one. For patient safety, the dose was kept similar to a
normal CT scan.

1.2 Purpose

The purpose of this thesis is to present a method that enables quantitative measure-
ments on the motions of stent grafts from ECG-gated CT data. The proposed method
consists of two parts: segmentation and registration. In the segmentation part the
stent is detected from the data and a geometric model is produced that describes the
stent in a concise way. In the registration part the deformation field of the data is
calculated and used to incorporate motion in the geometric model. We distinguish
the following research questions:

1
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Chapter 1. Introduction

• Is the data obtained with ECG-gated CT suitable for measuring the motions
expected for stent grafts in AAA?

• Can ECG-gated CT replace the regular CT study that patients currently have,
without any negative effects on the clinical procedure?

• Can we segment the stent graft from these (noisy) data, and with what accu-
racy?

• Is it possible to measure the motion of the stent graft from these data, and with
what accuracy?

• What kind of motions do stent grafts make inside the human body?

1.3 Outline of this thesis
In the next chapter, we will first give an overview of the work described in this thesis.
That chapter also discusses the clinical background in more detail. The remainder of
the thesis is divided in three parts:

Part A: ECG-gated CT — In Chapter 3 we discuss the experiments that we have
performed to study the possibilities and limitations of ECG-gated CT. In Chap-
ter 4 an experiment is described to compare the quality of the data obtained
with ECG-gated CT and regular CT.

Part B: Segmentation — In Chapter 5 we discuss the first part of an approach
to segment the stent graft in 2D slices sampled orthogonal to the centerline.
In Chapter 6 the tracking part of this approach is described. The fundamental
limitations of this approach are discussed and the accuracy of this method is
determined in an experiment. In Chapter 7 three variants of an algorithm to
track the wires of the stent in 3D are compared. This can be seen as the
predecessor of the segmentation algorithm described in Chapter 8, of which we
demonstrate that the produced geometric model has a high correspondence with
expert annotations.

Part C: Registration — In Chapter 9 we present a groupwise registration algo-
rithm which produces diffeomorphic deformation fields (i.e. no folding). We
demonstrate its applicability to different kind of data and its robustness for
intensity differences between the images. In Chapter 10 different registration
methods are evaluated for data containing a stent graft. The best algorithm is
applied to the patient data and the resulting deformation fields are applied to
the geometric models to obtain a dynamic model of the stent.

2
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2
Overview

This chapter is based on the book chapter entitled “Motion calculations on stent grafts
in AAA" published in the open access book "Diagnosis, Screening and Treatment of
Abdominal, Thoracoabdominal and Thoracic Aortic Aneurysms"[64].

2.1 Introduction

2.1.1 Abdominal Aortic Aneurysm
An abdominal aortic aneurysm (AAA) is a dilation of the vessel wall of the aorta,
usually between the renal arteries and the illiac arteries (Figure 2.1b). When such an
aneurysm ruptures, death follows within several minutes [114]. It is a leading cause
of death that affects mainly older white men (between 65 and 74 years of age). Due
to the aging population, the incidence and prevalence of AAA is expected to rise
[114]. Symptoms can consist of pain in the abdomen, back or groin, although AAA
is asymptomatic for most patients. The cause of AAA is multifactorial (for instance
cigarette smoking, genetic influence, atherosclerosis) and is related to weakening of
the aortic wall.

When detected in time, the aneurysm can be repaired. The norm for repair has
been that the aneurysm diameter should be larger than 5.5 cm, although it has been
shown that this is not an optimal criterion [111, 108].

2.1.2 Aneurysm repair
The conventional technique to repair AAA (since the 1950s) is to replace the unhealthy
aorta with an artificial graft by open surgery (Figure 2.1c). Although this approach
has good long-term results, the intervention is associated with high risks and has a
5% mortality rate [12, 53].

Endovascular aortic replacement (EVAR) is a minimal invasive technique (ap-
proved by the U.S. Food and Drug Administration in 1999) that uses stent grafts to

3
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Chapter 2. Overview

(a) Healthy aorta (b) Aneurysm (c) Open repair (d) EVAR

Figure 2.1: Illustration of AAA and two repair techniques: open repair (c), and EVAR
(d).

treat AAA. A stent graft (also known as an endograft) is a metallic frame surrounded
by a cloth graft. The aneurysm is accessed via the lumen of the blood vessels in
the groin. After deployment of the stent graft the blood will flow through the stent
graft, and the aneurysm outside the graft is excluded from the circulation. Hereby the
force exerted by the pulsating blood on the aneurysm is reduced (Figure 2.1d). This
will significantly reduce the chance of aneurysm rupture, and causes the aneurysm to
shrink in size over time [114].

With a mortality rate of 2% the technique has been proven to be successful [125,
12]. However, due to the need for reintervention EVAR does not have a significant
advantage over open repair on the long term [53, 27]. Late stent graft failure is
therefore a serious complication in endovascular repair of aortic aneurysms [16, 28,
54, 80, 88, 100]. Examples are metal fatigue, stent graft migration [80, 70], and
the formation of endoleaks (blood flow into the aneurysm sac) which can result in
aneurysm expansion and rupture [81, 82, 106].

2.1.3 Motion of stent grafts

The long-term durability of stent grafts is affected by the stresses and hemodynamic
forces applied to them, which may be reflected by the movements of the stent graft
itself during the cardiac cycle. Studying the dynamic behavior of stent grafts can
therefore give a better understanding of their motion characteristics, and can give
insights into how these motion characteristics relate to certain stent-related problems.
This information will be beneficial for designing future devices and can be valuable
in predicting stent graft failure in individual patients [74].

Motions of (stent grafts in) AAA can be measured using fluoroscopic roentgeno-
graphic stereophotogrammetric analysis (FRSA) [71], dynamic magnetic resonance
imaging [52], and ECG-gated CT [108]. Although ultrasound is also used [115], it
does not produce the three dimensional images that are required for the quantitative
analysis of the whole stent. ECG-gated CT has the advantage of having high contrast
for metal objects. Furthermore, ECG-gated CT is widely available, easily accessible,
and can easily be applied in a post-operative setting.

To study the motions quantitatively, and to process the large datasets associated
with ECG gating, automated processing is required. We divide the processing in two

4
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2.2. ECG-gated CT

G

z

y

x

Figure 2.2: Illustration of the orientation of the patient with respect to the CT
scanner. The ring indicated by ’G’ represents the gantry of the CT scanner.

steps: segmentation of the stent, and calculating the motions of the stent1.

2.2 ECG-gated CT

In computed tomography (CT) a three-dimensional image of an object is constructed
by a computer from a series of images obtained using roentgen radiation (Figure 2.2,
Figure 2.3). In current CT scanners the x-ray source rotates around the object while
the object is moved through the scanner in the z-direction. This enables scanning the
complete object in one continuous (helical) motion [58].

In recent years there have been major advancements in CT. Shorter rotation times
and the development of multi detector CT (MDCT) enabled the technique of ECG
gating, often referred to as cardiac CT [45]. With this technique, the patient’s ECG
signal is measured during the scan. It is then possible to divide the raw scan data
into bins that correspond to consecutive phases of the heart beat. The data in each
bin is then reconstructed into a three-dimensional image (i.e. a volume), and the final
result is a sequence of volumes, each corresponding to a different phase of the heart
cycle (Figure 2.4). This allows 4D visualization of the scanned object and enables
investigation to its temporal behavior [45, 94]. ECG-gated CT enabled measuring
motions that are synchronous with the patient’s heart beat; other motions, such as
those caused by breathing result in motion artifacts. The number of volumes that is
reconstructed per scan is in the order of 8-20 [108, 49].

2.2.1 Dose and the noisy nature of CT data

One of the major downsides of CT in general is the exposure of the patient to ionizing
radiation, which can have negative effects on the long term health of the patient
[98, 39]. The dose should therefore be kept as low as reasonably achievable. However,
this results in higher noise levels and more image artifacts, which can cause problems
for automatic image analysis algorithms that often need high quality data to operate.
Algorithms that can perform their task on low dose data can therefore contribute to
better patient safety.

In ECG-gated CT, multiple volumes are produced from the same amount of raw
data. Assuming that the dose is kept the same, the amount of noise in each volume
is therefore significantly larger than in volumes reconstructed using conventional CT.

1A stent graft consists of a metal frame surrounded by blood-proof material (the graft). When
we only use the word "stent", we refer to the metallic frame: the graft is not visible on a CT scan.
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Chapter 2. Overview

Figure 2.3: Illustration of iso surfaces rendered from CT data of two types of stent
grafts.

2.2.2 Combining the volumes

The clinic sometimes also requires the result of a non-gated scan because of its lower
levels of noise. Unfortunately, not all scanners are capable of producing a non-gated
three-dimensional image in case ECG-gated scanning was used. Scanning patients
twice is not an option considering the extra dose this would imply.

Averaging the data of the volumes off-line (i.e. not on the scanner’s reconstruction
computer) also produces a 3D dataset. This is a straightforward process, yet funda-
mentally different from combining the raw data (sinogram) before the filtered back-
projection reconstruction (as happens for a non-gated scan). Due to non-linearities
in the reconstruction process of the scanner, the results may be similar but will never
be exactly the same.

In a study on phantom data acquired with a 64-slice Siemens Somatom CT scanner
it was found that averaging the volumes in this way does not have negative effects on
image quality in terms of noise, frequency response and motion artifacts [63]. Rather,
the noise was found to be slightly lower, and motion artifacts were found to be less
severe.

For the purpose of segmentation, combining the volumes can also be advantageous.
It has been shown that combining a subset of all volumes in the sequence can produce
better results due to a more optimal compromise between noise and motion blur [66].

2.2.3 The effect of the patient’s heart rate

While the patient is moved through the scanner (i.e. along the z-axis), data is col-
lected and the patient’s ECG-signal is measured (Figure 2.2). To construct a single
volume with full coverage in the z-direction, data is collected from multiple heart
beats (Figure 2.4). The table speed, rotation time of the scanner, and the heart beat
of the patient together determine the amount of overlap in the z-direction. Negative
overlap signifies a volume gap (Figure 2.4b), which is expressed as extremely noisy
bands (Figure 2.5) that propagate through the data (the exact effects can differ per

6
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2.2. ECG-gated CT

(a) 70 bpm (b) 40 bpm

Figure 2.4: Diagram illustrating the process of ECG-gating. The light grey band
indicates the covered z-positions of the detector during the scan. The dark grey
patches represent parts of the phase in each heart beat.

Figure 2.5: Illustration of the noise bands in the CT images caused by the volume
gaps due to a too low heart rate (45 bpm) during scanning. Shown is an image of a
phantom which has small metal bars embedded at regular intervals. It can be seen
how the second bar from the top is hidden by a noise band (i.e. volume gap).

scanner). The data inside these gaps is completely unreliable (even if the scanner
tries to interpolate it) because data at these positions is simply not available [62].

It can be shown theoretically, and it has been verified in an experiment [62], that
there is a minimum required heart beat in order to obtain images without volume
gaps. This minimum heart beat can be calculated as follows:

Bmin =
60 · p
Trot

, (2.1)

where p is pitch factor, Trot the rotation time, and Bmin the minimum required heart
rate in beats per minute. For a typical setup with Trot = 0.37 and p = 0.34 the
minimum required heart beat Bmin = 55 bpm.

It is noteworthy that a too high heart rate should also be avoided, since this leads
to increased motion artifacts.

7
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Chapter 2. Overview

Figure 2.6: Diagram illustrating the two aspects of temporal resolution. Tw is deter-
mined by the rotation time and reconstruction algorithm. Td is determined by the
heart rate and the number of reconstructed phases (five in this example).

2.2.4 Temporal resolution

The temporal resolution of the technique of ECG gating consists of two parts (Fig-
ure 2.6): the first is the width of each phase Tw, which is fully determined by the ro-
tation time and reconstruction algorithm. Its value determines to what extent motion
causes artifacts in the resulting data. Since Tw depends on the applied reconstruction
algorithm, which is often chosen by the manufacturer, this value is often unknown.
In [62] a simple experiment is described to measure the value of Tw empirically.

The second part is the (temporal) distance between phases Td, which is determined
by the number of phases and the heart rate. It represents the sampling rate of the
technique. If more phases are reconstructed, Td decreases and the overlap between
phases increases.

In an ideal scenario, Tw should be as low as possible to be least affected by motion
artifacts, and Td should be approximately equal such that the sampling frequency is
high enough to prevent aliasing, with a minimal number of phases.

2.2.5 Application

ECG-gated CT is extensively used in cardiac exams [120, 85, 2], especially for the
assessment of coronary arteries [32, 18, 46]. The goal in most of these studies is
to limit the effect of motion rather than to examine the motion itself for which the
technique can also be utilized.

Recently, ECG-gated CT was used to study the pulsating motion of AAA [108],
and the motion of the renal arteries [90].

The abdominal aorta is constantly in motion caused by the pressure waves from
the contracting heart. However, the dynamics of this motion are more subtle than
the motions present in the heart itself. It has been shown that the order of magnitude
of these motions is in the order of 2 mm [91, 108]. It is reported that the limits of
the motion that can be detected in clinical practice by ECG gating are slightly less
than the spacing between the voxels (usually in the order of 0.5 mm), and that for
a typical setup frequency components up to 2.7 Hz can be accurately detected [62].
This makes ECG-gated CT a suitable technique for studying motions in AAA.

2.3 Segmentation of the stent graft

Segmentation of the stent graft is performed on a three-dimensional image. Depending
on how the data is processed further, the segmentation is applied to all volumes in the
sequence, or to a single volume obtained by combining the volumes in the sequence.

8
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2.3. Segmentation of the stent graft

Several studies have been published on the segmentation of blood vessels in 3D,
which have correspondences with the wires of the frame of the stent and may therefore
be of interest (see [79] and [59] for an overview of vessel segmentation methods).
Methods that fit a series of spheres or ellipsoids to the vessel [8, 126], and methods
that segment the contour in slices perpendicular to the vessel centerline [50, 76] assume
a solid vessel with a diameter of several voxels. Due to the small diameter of stent
wires (1 to 3 voxels) and their sharp corners, these methods are not suitable for
the segmentation of stents. Region growing methods [13] have problems with leaks
and gaps and need a second stage to find the geometry from the segmented voxels.
A common method is the two-step approach [44, 57, 84, 123], which first segments
the vessel using a vessel measure [43] followed by centerline tracking. This method,
however, is known to have difficulties were the structure is not tubular, such as in
crossings and sharp corners in the stent’s frame.

A related method is used by [75] for segmentation of stent grafts in the aortic
arch. Interest points are extracted that are located on the center line of the stent
determined by a skeletonization of the volume thresholded at 2000 Hounsfield units
(HU) and weighted by its vesselness measure [43]. The result is a dense set of points
that lie on the frame of the stent.

Unfortunately, the quality of the data—defined as how well the frame of the stent
is distinguishable in the data—is not always sufficient for such a method to fully
segment the stent’s frame [65]. This quality depends on the combination of used dose,
stent wire diameter, material properties of the stent (i.e. absorption coefficient), and
patient anatomy. The stent can consist of CT values as low as 300 HU [65]. There
are also reports of some stent types being barely distinguishable, whereas other stent
types are well visible in data obtained using the same scanner settings [66].

In addition to the bad visibility of the frame of the stent, several problems can be
identified for (low dose) CT data. Firstly, the data is relatively noisy. Secondly, streak
artifacts occur where the stent’s metal frame is thick or where a coil is present next
to the stent graft. Thirdly, contrast agent injected in the blood results in CT-values
close to the range of CT-values seen for most stents. Fourthly, due to image artifacts,
the wire of the stent sometimes contains gaps.

In this section, we discuss a way to model the stent graft, and two approaches to
obtain such a model from the volumetric CT data in ways that are relatively robust
for the aforementioned problems.

2.3.1 Modeling the stent

Most studies related to the motion of stent grafts focus on measuring the stent’s
diameter changes [51] or determining the motion at a sparse set of points on the stent
[74]. A model that enables capturing material properties and high level knowledge
regarding the stent graft characteristics would be valuable to gain more insight in the
stent’s in vivo behavior [74]. Furthermore, such a model can also help in performing
more reliable (fluid dynamics) simulations, which is important for improving current
stent designs [17, 68].

In [66] a geometric model is proposed that represents the wire frame of the stent
as an undirected graph, with nodes placed at the corners and crossings of the frame,
and the edges between the nodes representing the wires (Figure 2.7). This model can
be applied to different stent types, and represents the topology of the stent’s frame

9
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Chapter 2. Overview

(a) (b)

Figure 2.7: Example graphs that describe a geometric model of a stent frame. The
edges between the nodes represent the physical wire frame of the stent. Nodes are
placed at corners (a) and crossings (b).

in a concise and natural way.

2.3.2 Segmentation of the stent graft via centerline tracking

A stent has a tubular structure, sometimes with branches, and can be approximated
by a series of stacked contours which are orthogonal to the centerline (Figure 2.8). An
approach published by [65] is to segment the stent in 2D images sampled perpendicular
to its centerline. Regions with high CT-values (typically above 500 HU) exist where
the metallic frame of the stent penetrates the image. These regions have high CT-
values and—due to their “pointy” structure—well suited for point detection.

The approach to segment the stent in these 2D images is to first detect a set of
interest points, after which a clustering algorithm is applied to find the points that are
on the wire of the stent. This process is then repeated in an iterative fashion, while
tracking along the centerline of the stent. At the end of this process, a 3D geometric
model of the stent is obtained.

An advantage of this approach is that part of the algorithm is 2D, which makes
visualization and algorithm design easier. A disadvantage is that modeling the stent
as a series of stacked contours causes difficulties at bifurcations and when parts of the
frame of the stent overlap.

2.3.2.1 Point detection

Four different point detection algorithms were taken into consideration and tested in
an experiment. An algorithm based on the product of Eigenvalues was found to work
the best. This measure, also known as the Gaussian curvature, can be expressed using
image derivatives: ∂2L

∂x2 · ∂
2L
∂y2 , where L is the 2D image. Other methods taken into

consideration were a static threshold, a dynamic threshold, and the Laplacian (the
sum of Eigenvalues).

2.3.2.2 Clustering

Four different clustering algorithms were taken into consideration and tested in an
experiment. The best method was found to be a custom method that uses a virtual
stick to select the stent-points in an iterative fashion. By selecting points from the
inside of the contour, spurious points outside of the contour are ignored (Figure 2.9).
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2.3. Segmentation of the stent graft

Figure 2.8: Illustration of how the stent can be approximated as a series of stacked
contours. (a) shows a volume rendering of the stent and a slice orthogonal to its
centerline. (b) shows a schematic illustration of contours perpendicular to the stent’s
centerline.

Figure 2.9: Example of the clustering algorithm after finding a coarse contour.

Other clustering methods taken into consideration were circle fitting, ellipse fitting,
and GVF snakes [124].

The result of the clustering method is a set of points that represent the contour
of the stent. By fitting a circle on these points, an estimate of the radius and center
position can be obtained, which are used during centerline tracking.

2.3.2.3 Centerline tracking and modeling

Starting from a manually selected seed point, the algorithm tracks the stent in both
directions. Starting from a coarse estimate of the centerline orientation, slices are
sampled, to which the aforementioned algorithms are applied. The center position
found at each slice is used to estimate the next centerline position. For the method to
be less sensitive to noise present on the center estimate (caused by the discrete nature
of the contour points), a smoothness constraint is adopted. Bifurcations are detected
when a significant change in the diameter estimate is encountered. Subsequently,
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Chapter 2. Overview

Figure 2.10: Example of the algorithm in progress. The blue dots indicates the found
centerline. The green dots indicate the found stent points, and the larger red dots
indicate the found nodes which will be connected to form a geometrical model.

3D image Graph ModelNodesDetect

seed points

Find

edges

Process

graph

Figure 2.11: Flowchart illustrating the three processing steps to extract a geometrical
model from the CT data.

both branches of the bifurcations are tracked individually.
To deal with the gaps between the different parts of the stent graft that are present

in some stent types (Figure 2.8a), the tracking will proceed in the last known direction
if no contour could be found. When no contour is found along a predefined distance,
it is assumed that the end of the stent is reached, and the tracking stops.

During centerline tracking the contour points in the current slice are matched
to the contour points of the previous slice. In this fashion the individual wires are
tracked too. The positions where two wires meet—which represent the corners and
crossings of the stent’s frame—are detected, and nodes are created at these positions
to build the geometric model (Figure 2.10).

2.3.3 Segmentation of the stent graft via the minimum cost
path method

A method to segment the stent graft in 3D by finding the optimal paths between a
large set of automatically detected seed points is proposed in [66]. The method can
be divided into three steps, which are illustrated in the flow chart in Figure 2.11.

2.3.3.1 Detection of seed points

In the first step, a set of seed points is found by searching the volume for voxels
subject to three criteria: 1) The voxel intensity must be a local maximum. 2) The
voxel intensity must be higher than a predefined threshold value. 3) The voxel must
have a direct neighbor with an intensity also above this threshold value.
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2.3. Segmentation of the stent graft

C B

A

(a)

C B

A

(b)

C B

A

(c)

Figure 2.12: Illustration of three meeting fronts in the MCP algorithm. The black
circular shapes indicate seed points A, B and C. In (a) the fronts do not yet meet.
In (b) front A meets front B, and the path is traced. A few iterations later, in (d) a
third front meets with the first, connection seed points A and C.

2.3.3.2 Finding the optimal paths

In the second step, the seed points are connected using a modified version of the
minimum cost path (MCP) method. The MCP method can be used for segmentation
of vessels and other structures (e.g. [24, 30, 38, 47, 55, 99, 121]). It is a level set method
in which a front is propagated monotonically following a (non-negative) cost function.
The advantages of this method are that it can be implemented in a computationally
efficient way, and that it can easily be modified to make it more suitable for a specific
problem, see for example [60] and [24].

To use the MCP method for stent segmentation, it is modified such that the fronts
evolve from all the seed points found in the seed point detection step. Connections
between the nodes are detected when two fronts collide, and the paths between the
points are found using a backtrace map that is maintained during the evolution of
the front.

The result of the MCP algorithm is a graph consisting of nodes (the seed points)
connected by edges. Each edge is associated with a path of voxels connecting one node
to another. However, many of these edges are false edges and have to be removed.

2.3.3.3 Graph processing

In the third step, the false edges are removed using graph processing techniques.
For this purpose, two scalar values are associated with each edge. The first is α,
the maximum cumulative cost on the path. It represents the weakness (i.e. inverse
strength) of the edge. This value is used to establish the order of the edges; a stronger
connection (lower α) is preferred over a weaker one. The second scalar value is β,
the minimum intensity (the CT-value in Hounsfield Units) on the path. Due to the
definition of CT-values (-1000 representing air and 0 representing water) this value
has a physical meaning and represents the quality of the edge; it is used to determine
whether an edge should be removed or not.

The processing of the graph occurs in multiple different passes. Firstly, weak
edges are removed based on the expected number of edges for each node. This value
depends on the specific stent type being segmented. The weakness value α is used
to establish the weakest edges to consider for removal, and the quality measure β is
used to determine whether an edge should be removed. Secondly, a clean-up pass is
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(a) Before (b) After

Figure 2.13: Illustration of adding corners and nodes. In (b) two nodes were removed
and a node was placed at the corner. Another node was inserted at the crossing.

performed to remove redundant edges; an edge is found redundant if there is a path
of one or two stronger (i.e. lower α) edges that connect the same nodes. Thirdly,
corners are detected in the wire, and nodes are placed at the positions that have the
highest curvature. Hereafter the graph is cleaned up again. Fourthly, crossings are
detected and nodes are added to represent them. Finally, after a final clean-up step,
all the paths are smoothed.

2.3.3.4 Experiments and results

To evaluate the quality of the geometric model produced by this method, experiments
were performed in which the model was compared with a reference model annotated by
three experts. By counting the number of corresponding edges, a similarity measure
was obtained. A training set was used to obtain the optimal parameter values of the
algorithm, and using a test set the final performance of the method was evaluated.

The algorithm was found to be robust for variations in its parameter values, and for
the high noise levels present in the data. The found similarity with the reference data
was found to be 96% and 92% for the two stent types considered in the experiments.
Visual inspections of the results showed that most errors were present in difficult areas
of the stent, such as bifurcations and narrow legs where the wire has relatively sharp
corners.

An example of the results after each processing step is shown in Figure 2.14. In
Figure 2.15 lit surface renders are shown for the found geometric models of three
datasets.

2.4 Calculating motions and forces of the stent graft

When the geometric model of the stent is obtained, it can be used as a tool to study
the motions of the stent graft. For this purpose, motion is applied to the model.
In the first part of this section we discuss how this can be done, following the ideas
presented in [66]. In the second part of this section we discuss an alternative method
that uses active shape models to study stent graft motions.

2.4.1 Motion analysis using a geometric model

The motion of interest is obtained from the sequence of CT volumes using a regis-
tration algorithm. The purpose of a registration algorithm is to (elastically) align
two images; the result is a deformation field that describes how one image should be
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2.4. Calculating motions and forces of the stent graft

(a) MIP of the CT data (b) 1732 seed points (c) 4963 initial edges (d) 531 final edges

Figure 2.14: Illustration of the different algorithm steps. Shown are a Maximum
Intensity Projection (MIP) of the original data (a), the detected seed points (b), the
found edges (c), the result after processing the graph (d).

Figure 2.15: Illustration of lit surface renders of the geometric models for three ex-
ample stent grafts.
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Chapter 2. Overview

(a) Image A (b) Image B (c) Deformation
field

Figure 2.16: An example of registering two images, and the resulting deformation
field.

deformed to align it with the second (Figure 2.16). This deformation field can be
applied to the geometric model to enable studying the motions.

2.4.1.1 Image registration

The current range of common region based image registration algorithms can be
divided into two classes. Both classes usually adopt a multiscale approach in order to
prevent finding a local minimum, and to speed up the registration process. The first
class employs a B-spline grid to describe the deformation field, which is optimized by
minimizing/maximizing a similarity measure. Using Mutual Information (MI) as a
similarity measure, these methods have been shown to be robust for differences in the
appearance between the images [101, 118, 83]. While the use of a B-spline grid can
cause problems when describing rotational deformations [72], it has the advantage
that the deformations are described in an efficient way and are physically realistic
[93]. Additionally, the deformations can be regularized in various ways, for example
by minimizing bending energies or penalizing small Jacobians [101].

The second class uses image forces calculated at the pixels/voxels to drive the reg-
istration process. A popular example is the Demons algorithm [109], which is related
to optical flow. The deformation is obtained for each pixel individually by calculating
image forces, and regularization of the deformation field is performed by Gaussian
diffusion. The Demons algorithm is capable of handling extreme deformations, which
can also be a downside, since such deformations are usually not physically realistic.
Another problem with the Demons algorithm is that it assumes pixel intensities in
corresponding regions between images to be similar, which causes problems in images
containing much noise or artifacts such as bias fields [93].

It is of importance to select the right registration algorithm for each problem, and
to choose the best parameters, of which most registration algorithms have many [67].
In the case of registering the different volumes obtained by ECG-gated CT, the used
registration algorithm should be accurate in order to deal with the small motions
present in AAA, and should be robust for noise and other artifacts associated with
low dose CT. Which algorithms qualify for this task is currently being investigated.

2.4.1.2 Analysis of motion and forces

The result of the registration algorithm is a deformation field that describes the
deformation for each voxel in the volume. To study the motions of a stent, the
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2.4. Calculating motions and forces of the stent graft

Figure 2.17: Illustration of how the (change of) angle φ can be used to a estimate the
force present in the node when motion is applied to the model.

deformation field is applied to the nodes of the geometric model: for each node the
deformation is applied that corresponds to its location in the volume. This will allow
quantitative studies to the motion patterns of individual stents, and allows comparison
between patients.

Because the topology of the stent is fully captured by the geometric model, the
forces acting on the stent’s frame can be estimated by incorporating material prop-
erties such as stiffness, and by calculating the change of the angle between two edges
(Figure 2.17).

2.4.2 Motion analysis using active shape models

A technique of interest for the evaluation of motions of stent grafts is that of [75].
Their application is for stent grafts in the aortic arch to treat aortic ruptures caused
by trauma. In [74] a method for the unsupervised learning of models from sets of
interest points was proposed. It is based on minimum description length (MDL)
group-wise registration [110]. The global and local deformation are captured using
a statistical deformation model that is built during registration of a sparse set of
interest points. No a priori annotation, or definition of topological properties of the
structure is necessary.

Instead of deforming the whole volume they search for correspondences between
finite lists of interest points and local features in the data. This has a few advantages:
1) The algorithm can omit variations that are not relevant to the model. 2) The
approach is not constrained to an a priori topological class because it does not rely
on a mapping to a reference manifold. 3) No prior segmentation of the object is
necessary, only the interest point extraction method has to be chosen according to
the structure of interest. A disadvantage of this approach, however, is that it is less
accurate than texture-based registration with which registration errors smaller than
the voxel size can be obtained [92, 61]. This can be a problem for stent grafts in
AAA, because—due to the larger distance from the heart—the motions are smaller
than in the aortic arch.

2.4.2.1 MDL registration

First a set of interest points are detected in each volume of the ECG-gated sequence.
These points are treated as landmarks candidates; each landmark is associated with
a position (x, y, z) and local features (such as image intensity and steerable filters).
The registration is initialized by pairwise matching of a subset of the interest points.
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Figure 2.18: Global deformation (color-coded) for a few stent grafts. (Image courtesy
of G. Langs from [75].)

Starting from these correspondences group-wise registration is performed by minimiz-
ing a criterion function that captures the compactness of the model comprising the
variation of landmark positions and local feature variation at the landmark positions.
The minimum description length criterion accounts for the fact that the landmarks
located on the stent move in a highly correlated manner during the cardiac cycle.

The registration is optimized by a combination of k-D trees and genetic-optimization,
and is followed by a refinement using a direct search. The optimization process results
in a shape variation model, which is then used to study the motions of the stent.

2.4.2.2 Motion analysis

The analysis of the stent deformation during the cardiac cycle is performed using
the shape model that results from the group wise registration (Figure 2.18). For each
landmark the positions in all volumes in the sequence are known. Three measurements
can be obtained for each landmark: 1) The modes of variation of the statistical
shape model, which capture the correlation between landmark movements. 2) The
displacement of the landmarks, which reflect the absolute movement in the anatomical
environment. 3) The compactness of the local shape model build with the closest
landmarks, which gives an indication about the complexity of the local deformation.
This last measure is particularly of interest, since it is well suited to show regions of
potential stress to the material.

2.5 Outlook

An automated method to quantitatively study the motions and forces of stent grafts
in vivo enables studying the motion patterns of individual patients, relate them to
data of a previous date, or relate them to the motion patterns of other patients.

It would also be interesting to study the range of motion patterns of stent grafts in
patients without problems, and compare them to the motions in patients who do have
problems. Such studies would, however, require large datasets to incorporate all the
variabilities in motion patterns, particularly because problems with stent grafts are
relatively rare. Nevertheless, we believe that such studies can help our understanding
of the dynamics and failure of stent grafts, and can thereby help in designing better
stent grafts in the future. Further, we hope that we are able to correlate certain
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2.6. Conclusion

distinct motion patterns to specific stent-related problems, so that this technique can
be used for diagnostic purposes and prediction of stent failure.

2.6 Conclusion
Using ECG-gated CTA, information about the motion of stent grafts in AAA can
be obtained. Using segmentation methods, a geometric model of the stent can be
obtained that describes the topology of the stent in a compact way. Using registration
techniques, the deformation field can be found, which can then be applied to the found
geometric model. Thereby the motions of the stent graft are known in great detail,
and enables calculating the forces acting on the stent. Both parameters (motion and
force) provide new information that can be used in further analysis of in vivo stent
graft behavior and future device design.
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Part A
ECG-Gated CT

gating signal: A digital signal or pulse that provides a time window so that a par-
ticular event or signal from among many will be selected and others will be eliminated
or discarded.
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3
Detectability of motions in AAA with
ECG-gated CTA: a quantitative study

This chapter is published in slightly modified form in Medical Physics [62].

Abstract
ECG-Gated CT is a technique that can be used for evaluating the motions of stent
grafts inside abdominal aortic aneurysms (AAA). To be able to reliably quantify the
motion, however, it is of importance to know the performance and limitations of ECG-
gating, especially when the motions are small, as is the case in AAA. Since the details
of the reconstruction algorithms are proprietary information of the CT manufacturers
and not in the public domain, empirical experiments are required. The goal of this
chapter is to investigate to what extent the motions in AAA can be measured using
ECG-gated CT.

The duration of each ECG-gated phase was found to be 185 ms, which corresponds
to half the rotation time and is thus in accordance with half scan reconstruction ap-
plied by the scanner. By using subpixel localization, motions become detectable from
amplitudes as small as 0.4 mm in the x direction and 0.7 mm in the z direction. With
the rotation time used in this study, motions up to 2.7 Hz can be reliably detected.
The reconstruction algorithm fills volume gaps with noisy data using interpolation,
but objects within these gaps remain hidden.

This chapter gives insight into the possibilities and limitations for measuring small
motions using ECG-gated CT. From the results we conclude that ECG-gated CTA is
a suitable technique for studying the expected motions of the stent graft and vessel
wall in AAA.
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Chapter 3. Detectability of motions in AAA with ECG-gated CTA: a
quantitative study

3.1 Introduction
In recent years there have been major advancements in computed tomography (CT).
Shorter rotation times and the development of multi detector CT (MDCT) enabled
the technique of ECG gating [45]. ECG gating uses the ECG signal of the patient to
divide the raw scan data into bins that correspond to consecutive phases of the heart
beat. The data is reconstructed into a number of volumes, each corresponding to a
different phase of the heart cycle. This allows 4D visualization of the scanned object
and enables the investigation of its temporal behavior [45, 94].

ECG gating is extensively used in cardiac exams [2, 120, 85], especially for the
assessment of coronary arteries [32, 18, 46]. The goal in most of these studies is to limit
the effect of motion rather than to examine the motion itself for which the technique
can also be utilized. Recently, ECG-gated CT Angiography (CTA) was used to study
the pulsating motion of abdominal aortic aneurysms (AAA), [91, 108, 119] and the
motion of the renal arteries [90]. Finally, ECG gating can also be used to evaluate
the motion of implanted abdominal stent grafts [65].

Late stent graft failure is a serious complication in endovascular repair of aortic
aneurysms [54, 100, 16, 28]. Better understanding of the motion characteristics of
stent grafts will be beneficial for designing future devices. In addition, these data can
be valuable in predicting stent graft failure in patients. If detected, these patients
will benefit from early reintervention.

The abdominal aorta is constantly in motion caused by the pressure waves from
the contracting heart. However, the dynamics of this motion are more subtle than
the motions present in the heart itself. To be able to reliably quantify these motions,
it is of importance to know the capabilities and limitations of the applied ECG gating
technique, especially when the motions of interest are small as in the case of AAA (in
the order of 2 mm [91, 108]). Several studies have been performed to validate the use
of ECG gating for diagnostic purposes [2, 120, 32, 18, 36]. Quantitative performance
[41] and simulation [86] studies have also been performed. However, to the best of our
knowledge, there are no quantitative studies on the performance of ECG-gated CTA
with respect to the detectability of motions in AAA. Such a study is required to be
able to distinguish measured motion from measurement errors in studies on motion
using ECG-gated CTA, and will help in designing future experiments to study motions
of stent grafts in AAA.

The purpose of this paper is to investigate the performance of ECG gating quan-
titatively in motion detection for AAA. The results are compared to values which
are theoretically determined on the basis of the scan parameters. This provides in-
sight into the effects of the complex reconstruction algorithms — and the applied
proprietary optimizations and corrections applied by manufacturers — on the motion
detectability. Furthermore, the limits of the motion that can be detected in clinical
practice by ECG gating is determined. In the present study the research questions
can be divided into four topics, which are discussed in the next sections.

3.1.1 Temporal resolution
In ECG-gated CT temporal resolution consists of two parts (Figure 3.1): the first
is the width of each phase Tw, which is fully determined by the rotation time and
reconstruction algorithm. Its value determines to what extent motion causes artifacts
in the resulting data. The second is the (temporal) distance between phases Td,
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3.1. Introduction

Figure 3.1: Diagram illustrating the two aspects of temporal resolution. Tw is deter-
mined by the rotation time and reconstruction algorithm. Td is determined by the
heart rate TRR and the number of phases that we chose to reconstruct (five in this
example).

which is determined by the number of phases and the heart rate. If more phases are
reconstructed, Td decreases and the overlap between phases increases.

Since using redundant data degrades the temporal resolution [96], optimal tem-
poral resolution in terms of Tw is achieved by minimizing the number of projections
used to reconstruct the image. There are a variety of reconstruction algorithms, which
result in different values for Tw. For standard fan beam reconstruction, for example,
the minimum range of projections is 180 degrees plus the fan beam [96]. For paral-
lel beam reconstruction, however, temporal resolution of half the rotation time can
be achieved [96, 94, 45, 86, 1]. Multi segment reconstruction can result in an even
higher temporal resolution for some heart rates by reconstructing a volume using the
raw data from different heart cycles [46, 1, 32, 37]. To be able to use an N-segment
reconstruction, the spiral pitch factor (or pitch) has to be low enough and the heart
rate high enough such that every z location is imaged during at least N heart beats.
Because lowering the pitch generally results in a higher exposure, the technique can
only be used at high heart rates.

Since Tw depends on the applied reconstruction algorithm, which is often chosen by
the manufacturer and of which the details are not in the public domain, an experiment
was designed to determine it empirically.

3.1.2 Amplitude

The motions typically seen in (stent grafts inside) AAA are in the order of 2 mm
[91, 108]. The detectability of these motions depends on the localization accuracy of
the object in each phase. The accuracy can be increased by using fitting techniques
to find the non-integer (subpixel) location between two voxels of an object. However,
the localization fit suffers from errors in the found location (localization noise), which
can be larger than the motion itself if the motion’s amplitude is low. We investigated
the amplitude limit below which motions cannot be detected.

3.1.3 Frequency

The data collected during the time Tw results in a single phase. Due to this averaging
effect there is an upper limit f1 on the frequencies that can be measured. For a
sinusoidal motion this limit is:

f1 =
1

2Tw
. (3.1)
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(a) 70 bmp (b) 40 bpm

Figure 3.2: Diagram illustrating the process of ECG-gating. The light grey band
indicates the covered z positions of the detector during the scan. The dark grey
patches represent parts of the phase in each heart beat. The horizontal lines that
connect the patches indicate the measured z-position in subsequent parts of the same
phase. They show the overlap (as in a) or volume gap (as in b) between the patches
that belong to the same phase. The dotted vertical lines indicate the time at which
the gantry is at zero degrees.

In order to measure motions accurately, a sufficient sampling rate is required (Nyquist
frequency). This introduces a second upper limit f2 for the measurable frequencies:

f2 =
1

2Td
=
Nphases
2TRR

=
Nphases ·B

120
, (3.2)

where TRR is the time of one heart cycle, and B the beats per minute. Hereby is
shown that patient’s heart rate has a linear relation with the maximum frequency,
and consequently, may affect the detectability of motion.

Motions in the abdominal aorta are produced by the pressure wave of the blood
induced by the pumping of the heart. It has been shown that this pressure has a
relatively simple shape: the pressure first increases quickly in around 200 ms and
then decreases slowly until the next pressure wave [107, 80, 49]. When the heart rate
increases, the shape of the pressure increase is approximately constant.

In the present study the aim is to determine which frequencies can be reliably
detected before evident motion artifacts occur. To evaluate whether this is sufficient to
reliably measure the motions as they occur in a clinical setting, the result is compared
with the frequency components present in a pressure profile measured in vivo in the
aortic artery, published in a study by Hazer et al. [49]. Additionally, we investigate
whether certain motions, like motions synchronous with the rotation of the scanner,
can result in unexpected behavior.

3.1.4 Minimum required heart rate
Figure 3.2 shows a diagram that illustrates the process of ECG gating. The dark
patches represent a part of the phase in each heart beat. The overlap in z direction
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Figure 3.3: Schematic drawing of the phantom used for detecting motion. The phan-
tom consists of a PMMA cylinder with stent wire fragments embedded at 20 mm
intervals.

Figure 3.4: Schematic drawing of the setup. The motion unit (M) drives the phantom
(Figure 3.3) inside the CTDI phantom’s center hole, which is depicted in front of the
gantry (G). The left and right hand side show the setup for measuring in the z- and
x-direction, respectively.

between these patches depends on the patient’s heart rate. Increasing the number of
phases will result in subsequent phases being closer together (in time), but two patches
of the same phase will remain at equal distance (both in time as in z location).

In Figure 3.2b it is shown that the time between two subsequent heart beats is
too large for 40 bpm: the z coverage for two subsequent heart beats does not overlap,
but shows a volume gap. To prevent this, the table displacement is limited to the
nominal beam width during one heart cycle. The minimum heart rate Bmin required
to prevent volume gaps is given by [96, 58]:

Bmin =
60 · p
Trot

, (3.3)

with p the pitch and Trot the rotation time.
To lower the minimum heart rate the pitch should be reduced, resulting in a longer

scan time. Increasing the rotation time is not an option as it would increase motion
blur (except for multi segment reconstruction at a certain heart rate). Equation 3.3
shows that if the rotation time is reduced, the pitch should be reduced accordingly.
Since the number of photons that contribute to the reconstructed image depends on
the rotation time and the tube current only, decreasing the rotation time requires
an increase in tube current for the noise to remain the same. Because lowering the
rotation time requires also lowering the pitch, the total exposure is increased. A faster
rotation thus leads to a higher temporal resolution at the cost of increased exposure
[86, 96].

It is of importance to verify the above theoretical limit and to know how the scan-
ner performs in the presence of volume gaps since this can occur in clinical practice.
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A0 A1 A2 A3 A4 A5 A6
# periods per phase 1 1 1 1 1 1 1

heart rate 60 60 60 60 60 60 60
frequency (Hz) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
amplitude (mm) 0.2 0.4 0.7 1.2 2.0 3.0 4.0

B0 B1 B2 B3 B4 B5 B6
# periods per phase 2 2 2 2 3 3 3

heart rate 45 54 56 60 54.05 60 80
frequency (Hz) 1.5 1.8 1.87 2.0 2.7 3.0 4.0
amplitude (mm) 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Table 3.1: The motion patterns used in the experiments. A0 trough A6 vary in
amplitude, while B0 through B6 vary in frequency.

3.2 Materials and Methods

All experiments were performed on a Siemens Somatom 64-slice CT scanner (Siemens
Medical Solutions, Erlangen, Germany) with a rotation time of 0.37 seconds, a pitch
of 0.34 and 2 × 32 × 0.6 mm collimation. An effective tube current time product of
180 mAs was used at a tube voltage of 120 kVp. The same parameters are used in the
clinic, with the exception of the automated tube current modulation, which was turned
off for our experiments. Retrospective gating was applied to obtain ten (equal distant)
cardiac phases, unless stated otherwise. Each volume was reconstructed using the
B36f reconstruction filter and resulted in approximately 80 slices of 512× 512 voxels.
The slices (thickness 2 mm) were spaced 1 mm apart, and the spacing between voxels
in the xy-plane was approximately 0.5 mm.

To quantitatively study motions in ECG-gated CT, a device capable of moving in a
predetermined pattern was used (PC Controlled Phantom Device, QRM, Möhrendorf,
Germany). It consists of a motion unit that moves a lever, to which a phantom can be
attached. The phantom (constructed in-house) consisted of a cylinder made of PMMA
(length 160 mm, diameter 10 mm) in which pieces of nitinol wire were embedded at
20 mm intervals (Figure 3.3). The wires (length approximately 6 mm, diameter 0.2
mm) were cut from the framework of a stent graft, and resulted in highly localized
points (with a full width at half maximum of approximately 2-3 voxels in the xy-
plane) . A standard CTDI body phantom (32 cm in diameter) was used to provide a
tissue-like medium and functioned as a guide for the cylindrical phantom to move in
(Figure 3.4). To drive the motion unit, seven amplitude patterns and seven frequency
patterns were designed (Table 3.1). Triangular motion patterns were used such that
the resulting motion was linear and could easily be mathematically described. No
assumptions about the shape of the motion were made, since the goal of the present
study was to investigate the motion’s frequency components individually. To realize
a higher frequency, some patterns consisted of multiple triangular periods per cardiac
phase. An ECG signal was provided by the motion unit during the scan.

Using profiles A0-A6 (Table 3.1), measurements of the motion amplitude were
performed. Note that with amplitude, we refer to the peak-to-peak value of the
motion. For each profile one scan was performed in the x direction and one in the
z direction (Figure 3.4). The detectability in the x and y direction can be assumed
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equal due to the scanner geometry. To quantify the effects of the amplitude on
the detectability of motion, the bright spots where the nitinol wires penetrate the
slice are detected. Next, a triangular shape with the appropriate amplitude is fitted
through the points, and the localization errors of the detected points are calculated
by subtracting the fitted triangle from the found locations.

Profiles B0-B6 were designed to investigate the frequency characteristics and were
set up to go from low to above the expected maximum measurable frequency. Pro-
files B0-B3 have a TRR around the expected minimum required heart rate, which is
(according to Equation 3.3), 55.1 beats per minute. Profile B4 is designed to move
synchronous with the rotation of the scanner. All measurements with profiles B0-B6
were done in the z direction because of practical considerations concerning the setup.
To measure the detectability of motion as a function of frequency, the same approach
was used as for the amplitude measurements. To be able to compare the results of
the frequency measurements with the frequency characteristics present in a clinical
setting, the reported pressure profile published by Hazer et. al. [49] was used. The
spectrum of the profile was obtained using the fast Fourier transform.

To measure the temporal resolution (Tw) the uniform module of the Catphan
phantom (The Phantom Laboratory, Salem, USA) was scanned with ECG gating
using the simulation ECG signal of the scanner at 70 bpm. This single scan was
then reconstructed eight times with the number of phases ranging from 3 to 10. For
3 phases, there was no overlap between two subsequent phases. For higher number
of phases, the overlap between two subsequent phases increases. We measured the
correlation coefficient for a set of voxels in two subsequent phases: ρa,b = E((A −
µa)(B − µb))/(σaσb), with E the expected value operator, A and B the voxel data
of the two phases, µ the mean, and σ the standard deviation. The resulting number
(between zero and one) indicates to what extent the noise is correlated (i.e. coming
from the same source), and is a measure for the overlap between the two phases. The
point at which there is just no overlap between subsequent phases is the point where
Td and Tw are equal. Estimating this point gives us Tw.

We developed algorithms in Python1 to process the data on a PC. To process the
results of the moving phantom scans, the slices penetrated by the nitinol wires in
the phantom were manually selected. To compensate for the noise in scans in which
motion in the z direction was measured, multiple slices were averaged. Next, the lo-
cations of the stent graft wires in the phantom were automatically detected by finding
the voxel with maximum intensity in a region where the wire is expected, and the
subpixel location is estimated using a polynomial fit. Would a 2D quadratic fit be
used, the system of equations is over-determined (nine equations and five unknowns)
and the result would be a least squares solution, which is non-interpolating and can
therefore deviate more than half a pixel from the detected integer location. There-
fore, two 1D quadratic polynomials were used to fit the x and y subpixel location
independently.

3.3 Results

To measure Tw, the overlap of the different phases was determined from the correlation
of the noise. The correlation between two subsequent phases is shown in Figure 3.5.

1www.python.org
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For a low number of phases the correlation is zero. From the point where Tw equals
Td the correlation increases as the number of phases increases. It can be seen in
Figure 3.5 that this occurs after approximately four phases (for 70 beats per minute).
The dotted line represents the correlation of two phases that are separated by one
phase, in which case the correlation starts to rise after 8 or 9 phases. In Figure 3.5b
the correlation is plotted as a function of temporal distance Td. The lines incline
in a linear fashion, which enables fitting a line through the points and finding the
point (on the x-axis) where Td is equal to Tw. The dashed line shows the fit, which
intersects with zero correlation at Td = 186.6± 2.4 ms, which corresponds to half the
rotation time as used in the experiment. Hence the exact value of Tw can be assumed
to be 185 ms.

The motion detectability was derived from the measured positions (with the mean
subtracted) of the detected points and is shown for different amplitudes in Figure 3.6.
The scans contain four or more points in each of the ten phases, resulting in at least
forty data points per scan. The triangular shape becomes more apparent as the
amplitude increases. The absolute error as a function of amplitude (after subtraction
of the known triangular shape) is illustrated in Figure 3.7.

To determine which frequencies can be reliably detected, the absolute error was
calculated for different frequencies (Figure 3.8). Figure 3.9 shows an example of a
detected motion for profile B5 (3Hz). In the introduction we discuss the possibility
of unexpected results for motions synchronized with the gantry rotation. This was
investigated (using the scan with motion profile B4), but no differences compared to
the other scans were detected. Figure 3.10 shows the shape and spectrum of a pressure
profile measured in vivo in the aortic artery. It can be seen that the spectrum contains
several higher harmonics.

The minimum required heart rate was determined by examining four slices through
the phantom at heart rates around the minimum required theoretical heart rate of
55.1 bpm. Figure 3.11 illustrates four example slices at profiles B0-B3. From the
lowest heart rate in Figure 3.11 one can clearly observe the noisy bands due to the
volume gap, which propagate from top to bottom for increasing phase number. At
54 bpm the bands are still visible, but very thin. For 56 bpm, which is just above the
theoretical limit, a band can be observed in some phases (near the top of the shown
image for example) on close examination. For 60 bpm, however, the images contain
no noise bands. In Figure 3.11a four bars of the phantom can be seen, of which the
first, third and fourth from the top are clearly visible. The second, however, seems
to have disappeared, while it is clearly visible in the other phases and in the other
examples.

3.4 Discussion

In the current study several experiments were performed to evaluate temporal reso-
lution, the effect of amplitude and frequency on the detectability of motion, and the
minimum heart rate.

3.4.1 Temporal resolution

The value of Tw was found to be 185 ms which corresponds to half the rotation
time. This result strongly suggests that the scanner used a half scan reconstruction
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(a) (b)

Figure 3.5: Illustration of the correlation between subsequent phases against the
number of phases (a) and against the time between phases (b). The dashed line in b
is a linear fit through the seven data points left of the 180 ms mark.

(a) x direction (b) z direction

Figure 3.6: Illustration of the moving position of the points for different amplitudes.

algorithm. However, above a certain heart rate some scanners might switch to multi
segment reconstruction, which results in higher temporal resolution [46, 37].

The number of phases to reconstruct should be chosen such that there is overlap
between subsequent phases (Td < Tw) even for patients with low heart rates. For
our settings and a heart rate of 50 bpm (TRR = 1.2 s) this is 1.2/0.185 = 7 phases.
Using more phases results in a higher temporal resolution (in terms of Td). However,
because more than 50% overlap between subsequent phases results in redundant data,
a maximum number can also be calculated: for a heart rate of 50 bmp this is achieved
at 2 × 1.2/0.185 = 13 phases. We can thus conclude that for ECG-gating (on our
scanner type) using eight to twelve phases is a reasonable choice.

The described experiment enables measuring the temporal resolution in a generic
and reliable way, is applicable to other scanner types, and can be performed on any
phantom with a uniform volume.
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(a) x direction (b) z direction

Figure 3.7: Illustration of the error versus amplitude. The solid line represents the
mean absolute error. The dotted lines are the 25 and 75 percentile of the sorted
absolute error of the 40+ datapoints in each experiment. The dotted 45 degrees line
indicates where the error and amplitude are equal.

Figure 3.8: Illustration of the error versus frequency. The solid line represents the
mean absolute error. The dotted lines are the 25 and 75 percentile of the sorted
absolute error.

Figure 3.9: Example of the detected motion (solid) of a point at 3.0 Hz and the known
profile (dotted). The horizontal boxes indicate the temporal width Tw of 185 ms.
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3.4. Discussion

Figure 3.10: Illustration of the shape (left) and the Fourier response (right) of a
pressure profile in the aortic artery, as reported in the literature [49].

(a) B0 (45 bpm) (b) B1 (54 bpm) (c) B2 (56 bpm) (d) B3 (60 bpm)

Figure 3.11: Illustration of the of noise bands in the CT images, caused by the volume
gaps due to a too low heart rate during scanning. At 45 bpm the (horizontal) noise
bands are clearly visible (indicated by the arrows). It can be seen how it hides the
second bar from the top. At 54 bpm the noise bands are very thin. At higher heart
rates no noise bands can be detected.

3.4.2 Amplitude

Figure 3.6 and Figure 3.7 show that, as expected, the error in localization is higher
in the z direction because the voxel size is approximately twice as large as in the x
direction (1.0 mm versus approximately 0.5 mm). From Figure 3.7 it can be seen that,
as anticipated, the error is nearly constant. The slight slope is probably due to the
effect of motion artifacts, which become more prominent as the amplitudes increases.
In Figure 3.7a and Figure 3.7b the amplitude exceeds the noise level when the error
is to the right of the dotted 45 degrees line. Naturally, this is not an abrupt process:
the motion will emerge from the noise with increasing amplitude. Nonetheless, from
Figure 3.6 it can be seen that amplitudes as small as 0.4 mm in the x direction and
0.7 mm in the z direction can be detected.

In the experiments for the amplitude measurements it is of importance that the
phantom moves accurately according to the intended profile. Two sources of error can
be distinguished. First, the motion unit. According to its specification, the precision
of the start position of the motion unit is better than 0.2 mm and the reproducibility
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of motion profiles in quasi-stationary state better than 1%. This suggests that the
device may introduce small errors for the lower amplitudes. Second, the transfer of
the motion to the phantom. In the z direction this transfer was realized by directly
attaching the phantom to the lever. The lever was then fixed in such a position (using
bolts) that the phantom moved smoothly in its guide. Due to mechanical restrictions
for the x direction, however, the motion had to be transferred via a corner piece,
which allows some minor bending. By ensuring the phantom moved smoothly in its
guide, the friction was reduced as much as possible. The fact that the accuracy was
found to be better in the x direction suggests that the measurements were not unduly
affected by the latter source of possible error.

Noise in the image data causes errors in the subpixel localization. Thus it is
expected that when images with less noise would be produced, the accuracy will
increase. However, to realize the latter, exposure will have to be increased. In our
experiments we used an exposure comparable with that used in the clinical setting.

3.4.3 Frequency

The B0 measurement (1.5 Hz) had a relatively large error due to the heart rate that
was too low during this measurement (Figure 3.8). The next three measurements had
a relatively low error, and from 2.7 Hz and up the error increases.

With ten phases and a heart rate of 50 bpm, Td = 120 ms and the Nyquist
frequency is found at 4.2 Hz (Equation 3.2), which is well above the frequencies
examined. Since higher heart rates give rise to even higher Nyquist frequencies, the
Nyquist criterion is of minor importance for our experiments.

Due to the temporal width of the phases, the effect of motion artifacts increases
with increasing frequency, until they reach an upper limit, above which the motion
should not be measurable. Given Tw = 185 ms, the upper limit is found at 2.7 Hz
(Equation 3.1). However, the results suggest that motion at 2.7 can be measured
relatively well. To study this in more detail, the detected motion of a point at 3 Hz is
shown in Figure 3.9, indicating the temporal phase width Tw using horizontal boxes
of 185 ms. (Half scan reconstruction was assumed, as the bpm in this measurement
was lower than that used in the temporal resolution experiment.) As 185 ms is over
half the period of motion (167 ms), we would expect the estimated motion to be poor,
yet (for most points) the estimated locations are good. This surprising result can be
explained by the way the data—acquired during half a rotation—is processed; because
of the reconstruction, motion during the acquisition results in highly localized motion
artifacts and not necessarily blurring. Therefore, the location of the detected point
can still be relatively accurate.

Figure 3.10 shows that the pressure (and thus the motion) in the aortic artery
contains frequency components higher than 2.7 Hz. This will express itself in motion
artifacts in the phases acquired during the sudden rise of pressure at the start of
the cardiac cycle. Consequently, these phases can be rendered useless if the motion
artifacts are too strong, in which case the motion needs to be estimated from the
other phases. The cause of this problem is the width of the phase Tw, which can
be reduced by using smaller rotation times or using dual source CT. However, as we
have discussed in section 3.1.4, this requires an increase in exposure in order for the
minimal required heart rate to remain equal.
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3.4.4 Minimum required heart rate
The results in Figure 3.11 shown that the minimum required heart rate is close to the
theoretical limit of 55.1 bpm calculated in section 1.4. In a volume gap, the voxel data
is undefined. Nevertheless, the scanner attempts to fill in the gap; it can be seen that
the black vertical lines (the air between the phantom and its guide) are continued in
the bands, which suggests interpolation. The fact that the bar in Figure 3.11a was
completely hidden implies that the scanner fills in the bands to some extent, but the
data is very noisy and not reliable.

3.5 Conclusions
We performed experiments to investigate the effect of amplitude and frequency on
the detectability of small motions in ECG-gated CT. Also investigated were tempo-
ral resolution and minimum required heart rate. The experimental methods can be
applied to CT scanners of other manufacturers.

The experiment designed to measure the temporal resolution empirically clearly
showed that the duration of each ECG-gated phase is 185 ms for our scanner and
settings, which corresponds to half the rotation time. The other experiments showed
that motions become detectable from amplitudes as small as 0.4 mm in the x direction
and 0.7 mm in the z direction. Motions up to 2.7 Hz can be accurately detected.
Volume gaps caused by a too low heart rate are expressed in noisy bands in the data
that propagate in the z direction. The reconstruction algorithm uses some form of
interpolation, but cannot prevent objects in volume gaps becoming hidden.

This study gives insight into the possibilities and limitations for measuring small
motions using ECG-gated CT. From the results we conclude that CTA is a suitable
technique for studying the expected motions in AAA.
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4
Diagnostic quality of time-averaged

ECG-gated CT data

This chapter is published in slightly modified form at the SPIE Medical Imaging con-
ference in Orlando, USA (2009) [63].

Abstract
In Chapter 3 we found that ECG-gated CTA is indeed a suitable technique for study-
ing the motions of stent grafts. However, the individual phases have a lower signal to
noise ratio (SNR) than data obtained using non-gated CT. In order not to obstruct
the clinical care for the patients involved in our study, data should be available for
diagnosis that has at least the quality as a non-gated CT scan (without having to
increasing the dose).

Some common CT scanners cannot reconstruct a non-gated volume from ECG-
gated acquired data. In order to obtain the same diagnostic image quality, we propose
off-line temporal averaging of the ECG-gated data. This process, though straightfor-
ward, is fundamentally different from taking a non-gated scan, and its result will
certainly differ as well. The purpose of this study is to quantitatively investigate how
good off-line averaging approximates a non-gated scan.

The experiments show that the spatial frequency content is not affected by the
averaging process. The minor differences observed for the noise properties and motion
artifacts are in favor of the averaged data. Therefore the averaged ECG-gated phases
can be used for diagnosis. This enables the use of ECG-gating for research on stent
grafts in AAA, without impairing clinical patient care.
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4.1 Introduction

In recent years major advancements are made in computed tomography (CT). Shorter
rotation times and the development of multi detector CT (MDCT) enable the tech-
nique of ECG gating, often referred to as cardiac CT. [45] ECG gating uses the ECG
signal of the patient to divide the raw scan data into bins that correspond to con-
secutive phases of the heartbeat. The data is reconstructed to a number of volumes,
corresponding to the pertinent phase of the heart cycle. This allows 4D visualization
of the scanned object and enables investigation to its temporal behavior.[45, 94] ECG
gating is used extensively in cardio CT, and is increasingly popular for research to
aortic abdominal aneurysms (AAA)[65, 90, 91, 108, 119]. Our research focuses on the
possibilities and limitations of ECG-gated CTA for investigating motions in AAA.

In our institution, when patients are recruited for research to stentgraft motion in
AAA, the non-ECG-gated scan that the patient normally receives is replaced by an
ECG-gated scan. A drawback of ECG gating is that less data is available per volume,
which results (as the dose is kept the same for both protocols) in relatively noisy
data and artifacts being more common. Hence, for diagnostic purposes, the clinic
requires the result of a non-gated scan. Unfortunately, not all scanners are capable of
producing a non-gated three dimensional scan in case ECG-gated scanning was used.
Scanning patients twice is not an option considering the extra dose this would imply.

We propose to average the data of the phases off-line (i.e. not on the scanners
reconstruction computer) to create the 3D dataset required. This is a straightforward
process, yet fundamentally different from combining the sinogram data before the
filtered backprojection reconstruction (as happens for a non-gated scan). Due to non-
linearities in the reconstruction process of the scanner, the results may be similar,
but will never be exactly the same.

The purpose of the experiments described in this document is to quantitatively
investigate how good off-line averaging approximates a non-gated scan. A positive
outcome of our research implies that studies using ECG gating can be performed
without obstructing patient care, also on scanners that do not support producing
regular scan data from an ECG-gated scan. As to our knowledge, this has not yet
been investigated.

A comparison is made between three datasets: the non-gated scan, a single phase
of the ECG-gated scan, and the averaged phases of the ECG-gated scan. The quality
of the different datasets is assessed by comparing noise properties, frequency response,
and motion artifacts. Noise properties are best compared based on the Noise Power
Spectrum (NPS): it provides a better method for investigating noise properties com-
pared to calculating the standard deviation, because it shows in what frequencies the
noise is expressed.[14] Frequency response is compared based on the Modular Transfer
Function (MTF). For ECG-gated studies, motion is generally present (or ECG gating
would not be necessary). Therefore it is of importance to know the effect of motion
artifacts and how they are expressed in an averaged ECG-gated dataset compared to
a dataset obtained with a non-gated scan.

4.2 Methods

Experiments have been performed using a non-ECG-gated protocol and an ECG-
gated protocol. The settings of the first were chosen as similar to the ECG-gated
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Figure 4.1: Diagram of the phantom used for detecting motion. The phantom consists
of a perspex cylinder with nitinol wire fragments embedded at 20 mm intervals.

protocol as possible. Both experiments were performed on a Siemens Somaton 64 CT
scanner (Siemens Medical Solutions, Erlangen, Germany). A fixed effective mAs of
180 was used at 120 kVp, and with 2×32×0.6 collimation. The slices had a thickness
of 2 mm and were spaced 1 mm apart. For the ECG-gated protocol a rotation time
of 0.37 seconds and a pitch of 0.34 were used. For the non-ECG-gated protocol the
rotation time and pitch were chosen as close to the ECG-gated protocol as the scanner
allowed: 0.5 s and 0.45 respectively.

Data from the ECG-gated protocol was reconstructed to ten cardiac phases. A
third dataset was created by averaging the ten phases of the ECG-gated scan, thus
producing a three dimensional dataset comparable to the data of the non-gated scan.

To study the noise and frequency response, the Catphan500 phantom (The Phan-
tom Laboratory, Salem, USA) was scanned. From the resulting datasets the Noise
Power Spectrum (NPS) and Modular Transfer Function (MTF) were determined. For
this purpose automated software developed in-home was used. The NPS was calcu-
lated from the uniformity module of the Catphan phantom. The MTF was calculated
from the two beads present inside the linepair module. Both the NPS and MTF were
calculated via a 2D FFT using a method similar to that described by Boedeker et
al.[14]

To study motion artifacts for the different protocols, a device capable of mov-
ing in a predetermined pattern was scanned (PC Controlled Phantom Device, QRM,
Möhrendorf, Germany). It consists of a motion unit that moves a lever, to which
a phantom can be attached. The used phantom (which was developed in-home, see
Figure 4.1) consists of a perspex cylinder (length 160 mm, diameter 10 mm) in which
pieces of nitinol wire (cut from a stent) are embedded at 20 mm intervals. A stan-
dard dose phantom (the CTDI phantom) was used to provide a tissue-like medium
and functioned as a guide for the cylindrical phantom. The device was set to produce
triangular motions at 60 beats per minute with a (peak-to-peak) amplitude of 3 mm.
The setup was such that the motion was lateral (in the x-direction). The result-
ing motion artifacts were quantified by measuring the full width at half maximum
(FWHM) of the nitinol wires as they appear in the scanned data.

4.3 Results

The NPS signals were determined for the non-gated, single phase, and averaged phases
(Figure 4.2). The standard deviation of the three datasets were calculated by taking
the square root of the mean of the NPS (Table 4.1). Furthermore, the average of the
MTF signals of both beads was determined (Figure 4.3).

In the three volumes resulting from the motion experiment, the slices penetrated
by the nitinol wires were selected manually (Figure 4.4), and a profile was selected
through the peaks (Figure 4.5). The FWHM of the peaks are shown in Table 4.2.
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Chapter 4. Diagnostic quality of time-averaged ECG-gated CT data

Figure 4.2: Illustration of the Noise Power Spectrum (NPS) of each dataset. The
straight vertical line indicates the Nyquist frequency.

Method SD
non-gated 13.6
single phase 26.8

averaged phases 12.5

Table 4.1: The standard deviations calculated from the NPS.

Method FWHM
non-gated 6.6
single phase 4.8

averaged phases 5.9

Table 4.2: The average full width at half maximum for the different scans, measured
from the wires in the moving phantom.

4.4 Discussion

The result of the NPS (Figure 4.2) shows that, as expected, for the single ECG-gated
phase the noise is high compared to both other measurements. It also shows that
averaging the ECG-gated phases leads to a slight reduction in noise, especially for
frequencies around 5 line pairs per centimeter. Using a two-sample t-test on mea-
surements from five slices in the uniformity module of the phantom, the standard
deviation is indeed found lower (p<0.0005). The measured standard deviations show
the same relation between the three datasets. The standard deviation of the averaged
phases is around 10% lower than the standard deviation of the non-gated scan. As
the effective mAs (the tube current divided by the pitch) is equal for both scans,
the radiation dose is equal as well. The precise reason for the reduced noise is un-
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4.4. Discussion

Figure 4.3: Illustration of the Modulation Transfer Function (MTF) of each dataset.
The straight vertical line indicates the Nyquist frequency.

Figure 4.4: Illustration of the slices (from the three datasets) containing a moving
object.

Figure 4.5: Profiles through the slices of Figure 4.4.
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known, but probably can be found in the way that data is combined (averaged) in
the reconstruction of a non-gated scan.

The approach for measuring the MTF from the beads differs from Boedekers [14]
in the normalization step. When the value at 0 lp/cm is used to normalize, the
normalization proofed not to be consistent, and comparison of the three methods not
reliable. To solve this problem, we have chosen to normalize by the mean of the MTF,
taking into account all frequencies below the Nyquist frequency. The motivation is
that an MTF can only show the relative power for each frequency. In our approach
the integral over all frequencies (up to the Nyquist frequency) is one.

The results of the MTF (see Figure 4.3) show that the MTF of the single phase
differs from that of a non-gated scan. The MTF of the averaged phases is similar to
the non-gated dataset, which suggests that the temporal averaging did not have any
negative effects on the spatial frequencies of the data.

From the partial slices in Figure 4.4 and the profiles in Figure 4.5 it can be seen
that for the single phase the peaks are more narrow because the data acquisition time
is lower compared to both other datasets. Due to the motion blur that occurs when
multiple phases are averaged in which the object is present at slightly different loca-
tions, the profile for the averaged phases is wider. For the non-gated scan, however,
the data is “combined” before the reconstruction and thus leads to a different kind
of artifact, as can be seen from its profile. From the measured FWHM values (the
averages are shown in Table 4.2), it follows that the artifacts of the averaged phases
are smaller compared to the non-gated dataset (p<0.001).

In these experiments the pitch and rotation time of the non-gated scan could not
be set the same as the ECG-gated protocol. While the effective mAs, and therefore
the dose, are the same, different results may be found when different scanner settings
are used. Larger differences in the results are probably found on different scanner
types as their internal reconstruction algorithms will differ.

We can conclude that—on our scanner—the proposed method is better than taking
a normal CT-scan. However, we suspect the method is not feasible to replace a
normal CT-scan; while the proposed method can be applied in a matter of seconds,
reconstructing the data and sending it to a dicom node will take ten times as long
(in the case of ten phases). Additionally, the patients ECG must be measured during
the scan, and the patient has to hold his/her breath longer. Our result does show,
however, that the current reconstruction techniques for non-gated CT are not optimal.

4.5 Conclusions
The temporal averaging of ECG-gated CTA data does not have negative effects on
image quality in terms of noise, frequency response and motion artifacts. The minor
differences observed for the noise properties and motion artifacts are in favor of the
averaged data. Therefore the averaged ECG-gated phases can be used for diagnosis.
This enables the use of ECG-gating for research on stentgrafts in abdominal aortic
aneurysms, without impairing clinical patient care.
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Part B
Segmentation

image segmentation: the process of partitioning a digital image into multiple seg-
ments. The goal of segmentation is to simplify and/or change the representation of
an image into something that is more meaningful and easier to analyze.
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5
Segmentation of stent grafts using a 2D

approach

This chapter is published in slightly modified form as “A segmentation method for
stent grafts in the abdominal aorta from ECG-gated CTA data" at the SPIE Medical
Imaging conference in San Diego, USA (2008) [65].

Abstract
This chapter describes a segmentation approach in which the stent is segmented in
2D slices sampled orthogonal to the centerline. In Chapter 6 it is described how this
can be used to segment the 3D stent by means of tracking.

Segmentation of the stent graft is performed by examining slices perpendicular to
the centerline. Regions with high CT-values exist at the locations where the metallic
frame penetrates the slice. These regions are well suited for detection and sub-pixel
localization. Spurious points can be removed by means of a clustering algorithm,
leaving only points on the contour of the stent. We compare the performance of
several different point detection methods and clustering algorithms. The position of
the stent’s centerline is calculated by fitting a circle through these points.

The proposed method can detect several stent graft types, and is robust against
noise and streak artifacts.
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Chapter 5. Segmentation of stent grafts using a 2D approach

5.1 Introduction

Endovascular Aortic replacement (EVAR) for the treatment of aortic aneurysms in
patients at risk of aneurysm rupture is an established endovascular technique [97].
However, the development of the stentgraft design is ongoing in order to prevent late
stentgraft failure (e.g. graft breakage, graft displacement). The stresses applied to
the stentgraft by the high physiological forces and stresses in the aorta have an effect
on the durability and functioning of the stentgraft. The stresses and forces that occur
during movement may be reflected by the motion of the stentgraft itself during the
cardiac cycle. Knowing the intrinsic properties of the stentgraft, it should be possible
to evaluate these stresses and forces by calculating its displacement and deformation.

We apply a cardiac CT technique, ECG-gated CTA (computed tomography an-
giography), to measure the stentgraft’s movements during the cardiac cycle. With a
normal CT scan, a 3D volume is imaged. This new method of applying ECG-gating
results in ten CT volumes, which each represent a different phase of the cardiac cycle,
allowing 4D visualization of the stentgraft.

5.1.1 Purpose

The purpose of our research is to gain more insight in the dynamic behaviour of the
stentgraft in vivo. Knowledge about the stresses acting on the stentgraft will help
understand the functionality and failure of different types of stentgraft over the long
term. These insights can help in stent design. Furthermore, the information on the
behaviour (during the cardiac cycle) and the long term functioning of different types
of stentgrafts can aid the treating physician in deciding which stent-type to use for a
specific patient.

5.1.2 Problem Statement

The movements of a stentgraft can only be measured if we know its exact position.
Therefore, we must first accurately segment the stentgraft. One of the challenges
of ECG-gated CTA is analysing the large dataset acquired: in the order of 4000
image slices per patient. Automatic detection of the metal frame of the stentgraft
will improve and speed up data processing.

Unfortunately, a simple thresholding algorithm is not sufficient for detecting the
stentgraft. The first reason is that the data is relatively noisy. For patient safety, the
total dose is kept similar to a normal CT scan. However, each volume is reconstructed
from the fraction of the total dataset related to the specific phase of the cardiac cycle.
Therefore the dose per volume is less, resulting in a lower SNR. Second, streak artifacts
occur where the stentgraft’s metal frame is thick or where a coil is present next to
the stentgraft; due to the lower SNR, their effect is larger than in regular CT. Third,
contrast agent injected in the blood results in CT-values close to the range of CT-
values seen for most stentgrafts. Fourth, different stentgraft types are made from
different materials (with different absorption coefficients) and differ in the thickness
of their frames. In some images, stentgrafts are seen to have CT-values as low as 300
HU (Hounsfield Units).
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(a) (b)

Figure 5.1: Volume rendering of a stent and a plane perpendicular to the stent’s
centreline (a), and an illustration of contours perpendicular to a centreline (b).

Figure 5.2: The surface plot of a slice shown at different angles to illustrate the pointy
structures that form the contour of the stent.

5.1.3 Approach

A stent has a tubular structure, sometimes with branches and can be modelled by
a series of stacked contours which are orthogonal to the centreline (see Figure 5.1)
[42]. Our approach is to segment the stent in images sampled perpendicular to its
centreline, as shown in Figure 5.1a. Regions with high CT-values (typically above
500 HU) exist where the metallic frame of the stentgraft penetrates the image. These
regions have high CT-values and are “pointy” (see Figure 5.2), which makes them
well suited for point detection. By segmenting the stent’s contours and iteratively
estimating its centreline the stent can be tracked, similar to how vessels are tracked
in a recent paper by Lee et al. [76]. An advantage of this 2D approach is that
visualization and algorithm design is easier in 2D than it is in 3D. In this document,
we discuss the process of finding the best way to detect the contour of the stent in
images sampled perpendicular to its centreline.

5.1.4 Overview

In our research we have considered various methods and combinations thereof. In
section 5.2 we will discuss the different methods. In section 5.3 we compare the
methods with an experiment to be able to select the best method.
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Chapter 5. Segmentation of stent grafts using a 2D approach

5.2 Methods

In this paper we focus on segmenting the stent in a slice perpendicular to its centreline.
Our approach consists of two tasks:

• Detect points on the contour of the stent.

• Find the cluster of points that really belong to the stent, removing spurious
points.

In this paper we will consider four point detection methods and three clustering
methods. Many of these methods use algorithms for specific basic tasks. These basic
algorithms are first discussed in subsection 5.2.1. In the six subsections after that we
will discuss the following point detection and clustering methods:

Point detection methods Clustering methods
static threshold (5.2.2) fitting (5.2.5)
dynamic threshold (5.2.3) snake (5.2.6)
Laplacian curvature (5.2.4) chopstick (5.2.7)
Gaussian curvature (5.2.4)

5.2.1 Basic Algorithms

In this subsection we discuss the algorithms that are used as part of the methods
described in this section.

5.2.1.1 Removal of metal artifacts

Metal artifacts are characterized by streaks of alternating high and low CT-values.
The high streaks can cause false points to be detected. The low streaks, on the other
hand, are often below 0 HU. Physiologically, tissue with negative CT-values is very
unlikely to occur in the local environment of the abdominal aorta because it suggest
tissue less dense than water.

We remove spurious points due to streak artifacts in all point detection methods
discussed in this paper. For example in the methods of 5.2.3 and 5.2.2 such points can
be found by checking for abnormally low CT-values in one of the direct neighbours of
a pixel under examination.

5.2.1.2 Circle Fit Algorithm

The stent is designed to have the shape of a blood vessel and is thus approximately
circular. Because the stent is easily deformed, however, the stent is compressed in a
shape that is in general not a perfect circle at all. By fitting the data with a perfect
circle, we generate a robust measure for the centre and radius of the stent, even when
the points are not distributed in a full circle. This provides a valuable tool that is
used by all of our clustering methods.

We have implemented the Modified Least Squares algorithm of Umbach and Jones
[112]. Their method is a fast closed form solution and performs well even with noisy
data or when only points on part of the circle are present. For details on the algorithm,
we refer to their paper [112].
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5.2. Methods

Figure 5.3: Illustration of the way
contour points define the circular
spline.

Figure 5.4: Illustration of the work-
ing of the centre estimate conver-
gence algorithm.

5.2.1.3 The Circular Spline

The clustering methods find points that lie on the contour of the stent. To produce a
more continuous contour on which we can perform calculations, intermediate points
are interpolated. We choose to interpolate in the polar coordinate system. This
will produce a smooth circular shape even when large gaps are present. The centre
point required to convert the points (x, y) to (r, φ) is estimated using the circle fit
algorithm of 5.2.1.2. In the polar coordinate system, we use bicubic interpolation
(using a cardinal spline [113] with tension − 1

4 ) to connect the points. Figure 5.3
illustrates the results after the spline is converted back to Euclidean space.

5.2.1.4 Centre Estimate Convergence Algorithm

Given an initial estimate of the centre of the stent1, and the set of points found by
the detection method, this algorithm calculates a better estimate of the centre and
the radius. The initial estimate can be near the edge of the contour. It is used by all
clustering methods discussed in this paper.

The algorithm first divides the image in five segments emanating from the centre
estimate (see Figure 5.4). Next, for each segment (or direction), the closest point to
the centre is selected. Then the algorithm discards points that are too far away from
the centre (two times the distance of the third closest selected point). The selected
set thus has a maximum of five points, which are distributed in multiple directions.
Finally, the circle fit algorithm is used to estimate the centre. This process is repeated
until the centre position does not change. By using five directions the algorithm will
succeed (find at least three points) with gaps of over 180 degrees.

5.2.2 Point Detection: Static Threshold

The simplest method to detect points is to detect local maxima: points which have
a larger pixelvalue than their eight neighbours. A threshold will prevent points to
be found in noise. This threshold is the main parameter of this method and should
be low enough to detect most points, but high enough to prevent too many spurious
points, for instance in contrast fluids. The threshold was empirically determined at
650HU.

1This centre is now manually selected, but will later be calculated from the estimated centreline
found in previous slices.

49



i
i

i
i

i
i

i
i

Chapter 5. Segmentation of stent grafts using a 2D approach

5.2.3 Point Detection: Dynamic Threshold

This method too, detects local maxima and requires pixelvalues to exceed a certain
threshold. In this case however, the threshold is dynamic: it depends on the local
environment of the pixel under examination. The threshold is applied to the pixelvalue
subtracted by the average of a local patch around it. The threshold for this method is
set at 260HU, which is—as expected—lower than for static thresholding. This method
allows us to find parts of the stentgraft that make a small contribution to the pixel
intensity, while minimizing the amount of spurious points, especially in scans where
contrast fluid was used.

5.2.4 Point Detection: Hessian Based

Differential geometry (in image processing) means extracting information (structure)
using the derivatives of images [69]. As can be seen in Figure 5.2, the spots where
the stent penetrates the slice are very intense, but what is even more distinguishing
is their pointy structure. This aspect can be detected using second order derivatives.
The Hessian matrix is an often used concept to describe second order properties in
2D or 3D. In 2D it is given as:

H(L) =

∂
2L
∂x2

∂2L
∂xy

∂2L
∂xy

∂2L
∂y2

 , (5.1)

with L(x, y) the image. In a pixel, the Hessian matrix can be used to calculate the
second order derivative in any direction. In the spots on the contour of the stent, the
second order derivatives are very high compared to the rest of the image. Therefore,
we consider the following measures:

• The sum of the Eigenvalues. Also known as the Laplacian, or the trace of the
Hessian matrix: ∂2L

∂x2 + ∂2L
∂y2 .

• The product of the Eigenvalues. Also know as the Gaussian curvature or ∂2L
∂x2 ·

∂2L
∂y2 .

The functions ∂
2L
∂x2 and ∂2L

∂y2 are calculated by convolving the image with (second order)
Gaussian derivative kernels with σ = 1.6. For a pixel to be classified as a candidate
point it has to be a local maximum and the Laplacian or Gaussian curvature in that
point has to be larger than a certain threshold. This threshold is the main parameter
of the methods and are empirically determined at 95 and 2000 for the Laplacian
and Gaussian curvature respectively, where the pixelvalues are scaled at one unit per
CT-value.

5.2.5 Clustering: Fitting

The first proposed method to segment the stent is to iteratively fit circles and ellipses
to the stent, assuming that its shape does not deviate too much from an ellipse.
The method starts by running the algorithm of 5.2.1.4 to produce an initial circle
estimate. Next, the algorithm calculates which points are closer than 2 · ttol to this
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5.2. Methods

(a) initial and converged
circle

(b) initial and converged
ellipse

Figure 5.5: Illustration of the fitting method applied to an example.

circle (where ttol is the tolerance measure) and selects these points. A new circle is fit
to the selected points and the process repeats itself until the circle does not change.
Then the method will fit ellipses rather than circles and points must now be closer
than ttol to the ellipse. When the ellipse estimate is converged the selected points are
the contour. See Figure 5.5 for an example. The tolerance measure ttol is the single
parameter of this method; we used a value of ttol = 0.1mm.

Fitting an ellipse and calculating the distance of a point to an ellipse are much
more complex then for a circle. The algorithm we use to fit ellipses is proposed by
Halir et al. [48] in 1998, and an improvement on the original algorithm of Fitzgibbon
et al. [40] To calculate the distance of a point to an ellipse we applied the algorithm
proposed by Eberly [34].

5.2.6 Clustering: Snake

Active contours (or snakes) are often used in medical imaging for segmentation. A
general challenge of active contours is to influence the snake where it is in a homoge-
neous region. We have chosen to solve this problem by implementing the method of
Xu and Prince: gradient vector flow [124] (GVF). Another solution is to use a balloon
force such as in Cohen et al. [23] and more recently in Dedbleds-Mansard et al. [29]
We have seen, however, that in our setting the balloon force can force the snake over
the points, which allows the snake to grow unlimited until iteration stops.

The GVF method iteratively generates a vector field (the GVF field) to guide the
snake. This field enables the snake to move into boundary concavities, gives the GVF
snake a large capture range, and makes it insensitive to initialization. Especially the
latter two features are expected to make this type of snake very robust and work well
in our setting.

We generate a black image with white pixels on the locations of the detected
points, and create a GVF field from this image. We initialize the snake by sampling
points on the circle estimated by the algorithm of 5.2.1.4. This makes the method
invariant to spurious points inside the contour, see Figure 5.6 for an example. After
the snake has converged, all points closer than 1.4 pixels to the snake are selected as
the contour.

One drawback of snakes in general is their large amount of parameters. In addition
to elasticity, rigidity, viscosity, external force weight we can also change the sample
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Chapter 5. Segmentation of stent grafts using a 2D approach

(a) initial snake (b) converged snake (c) circular spline

Figure 5.6: Illustration of the snake method applied to an example.

distance of the snake. On top of that, the resolution (number of pixels per mm) of
the created image also has influence on its behaviour. In our experiments we used
the slice’s resolution because the resolution among different datasets only differs by
a few percent. We used a relatively large rigidity to prevent the snake from leaking
through the larger gaps between points. The appropriate rigidity value was found to
be 20.

5.2.7 Clustering: Chopstick

We propose an algorithm that uses the internal geometry of the detected points to
select the points on the contour of the stent. It is designed for this clustering problem
in specific and has the advantage of an (in our opinion) intuitive working.

The first step consists of selecting a coarse set on the contour, which we will
explain using a virtual stick. The stick is attached to a point found by the algorithm
of 5.2.1.4 and aimed at the centre. We rotate the stick around the initial point until
it touches another point, which we then take into our selection. We attach the stick
to the new point and the process is repeated until we reach a point that we already
selected. In Figure 5.7 an example result is illustrated.

The next step consists of adding and removing points. Consider two points n1

and n2 that are connected by the stick in the first step. The algorithm searches for a
point in between n1 and n2 that is suitable for selection. If such a point is present, it
is taken into the selection; the stick is chopped in two pieces to connect n1 and n2 to
the new point. After searching in between all points, we examine each point using its
two direct neighbours (n1 and n2), and remove the point if it is not acceptable, using
the same method. This process of adding and removing points is repeated until the
selected set has converged.

The method to test the suitability of points is based solely on (the geometry of) the
two reference points (n1 and n2) and the centre point. It adopts two simple criteria
which are illustrated by three examples in Figure 5.8. Consider c the centre point,
p the candidate point, and −−−→n1 n2 and n1 n2 the vector and distance from n1 to n2

respectively. We calculate a point n3 which lies exactly in between n1 and n2, and a
point n4 which lies on the normal of −−−→n1 n2 (see Figure 5.7a).

The first criterion requires that the point must be in between the lines −−→c n1 and
−−→c n2. This intuitively focusses at points “in line of sight”. In the examples of Figure 5.7
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Figure 5.7: Example result after finding a coarse contour.

(a) Overview (b) Example 1 (c) Example 2 (d) Example 3

Figure 5.8: Illustration of the region in which points are found suitable by the chop-
stick method. The light, medium and dark shades of grey correspond to the first,
second and combined criteria respectively.

this is illustrated by the light grey area.
The second criterion requires the point to be inside an ellipse spanned between n1

and n2. An ellipse in general can be defined by two points and a constant Dellipse. A
point p is inside the ellipse if the distance from one ellipse-point to p and back to the
other ellipse-point is smaller then Dellipse. We position the two ellipse-points on the
lines −−−→n1 n4 and −−−→n2 n4 respectively, and chose Dellipse such that the ellipse just reaches
n1 and n2. The distance from n4 is equal for both ellipse-points and determines the
eccentricity of the ellipse. We use a measure f to describe this distance, where f = 0
means both ellipse-points are in n4 (the ellipse is a circle) and f = 1 means the points
are in n1 and n2 respectively (the ellipse is maximally elongated). We want the shape
of the ellipse to depend on c n3, being close to a circle when c is close, and elongated
when c is far. We propose for f :

f = 1− e−c n3 / n1 n2 (5.2)

The displacement of n4 relative to n3 is applied because points are more likely to be
found on the outer side of the line −−−→n1 n2 due the circular nature of the contour. The
distance of n4 to n3 is varied by the factor f of (5.2):

n3 n4 =
1

4
· c n3

f
(5.3)

We will shortly discuss the examples in Figure 5.8 for clarification. Example 1
shows eight points on the contour and the region between n1 and n2 where points are
justified according to the described criteria. In example two n2’s location is different;
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Chapter 5. Segmentation of stent grafts using a 2D approach

this point will be removed in a later stage of the algorithm. Example three illustrates
a large gap between n1 and n2. It can be seen how the displacement of n4 relative to
n3 moves the centre of the ellipse outward allowing points to be included that would
not be found suitable if n3 was the centre of the ellipse.

5.3 Experiments

5.3.1 Setup

We have performed experiments to compare the methods described in the previous
section. For this purpose, we randomly selected 200 slices from a set of scans of 23
patients. Each slice is centred at the stent, and tilted so that the slice is approximately
perpendicular to the stent’s centreline. In cases where two “legs” of the stent were
visible, we randomly selected either the left or the right. All slices were then stored
in a database file.

We build a Matlab application to annotate the slices by hand. With this tool,
we were able to load a database of slices, and select points on each slice through
which a circular spine (see 5.2.1.3) was drawn to show the contour of the stent. An
experienced radiologist annotated the 200 slices. We used the annotation data as our
“gold standard” to compare the performance of the methods. Additionally, we created
a training set of 50 slices which we used to determine the best parameter values of
the methods. All the values of parameters and thresholds mentioned in the previous
section have been determined using the trainingset.

The algorithms were applied to the slices in the database and compared to the
annotation data. Both the annotated data and the algorithms produced a set of points
on the contour of the stent. A circular spline was drawn through the points to make
the contours continuous, which enabled us to calculate the area of the segmented stent,
as well as compare the areas of the calculated contour and the annotated contour.
We used the following performance measure:

r =
A ∩M
A ∪M

, (5.4)

where A is the annotated area and M is the area that resulted from the selected
method. We have calculated the ratio r of each annotated slice in the database and
so produced an array of ratios.

5.3.2 Results and Discussion

In Figure 5.9a the histograms of all 12 methods are shown to illustrate the distribution
of r, the performance. From the overall shape it can be seen that the performance is
mainly above 85%. In Figure 5.9b an example result is shown against the annotation
for a case with r = 93%. It is clear that the result is good, which indicates that the
(7%) error is due to inaccuracy of the annotation.

The error which we want to measure is not the accuracy of the points—the algo-
rithm would always be more accurate than an annotator—but the selection of points.
Because such errors are relatively rare, we chose not to simply average the array of
ratios to compare the methods. Instead, we take the worst 30% and average it. In
this way the difference in performance between the methods is much more clear.
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(a) (b)

Figure 5.9: a: Histogram illustrating the distribution of the ratios. b: An example
result. The thick red line is the annotation. The green thin line the result for Gaussian
curvature with chopstick.

In Figure 5.10 the resulting performances are shown in a bar plot. We will first dis-
cuss the results of the point detection methods and then the results for the clustering
methods.

5.3.2.1 Point Detection Methods

It is clear that the performance of static thresholding is the worst. Although dynamic
thresholding significantly improves the results, both Hessian based methods perform
even better. It appears that the pointy nature of the structures on the contour of
the stent is a very characteristic feature. We have also seen in experiments that the
amount of spurious points on bone tissue or calcifications is significantly reduced for
the Laplacian and Gaussian curvature compared to the two thresholding methods.
We suspect that the characteristic property of the criterion is the cause of this.

Initially, we also considered the first Eigenvalue of the Hessian matrix as a mea-
sure, as it is the second order derivative in the direction where it it is largest. However,
experiments revealed at an early stage that the other two Hessian based methods out-
perform this measure. It appears the Gaussian curvature detection method performs
best. Although the Laplacian scores better in combination with the chopstick cluster-
ing method, the difference is so small that the significance is probably neglectable. It
does suggest, however, that in combination with chopstick, Laplacian point detection
works as well as Gaussian curvature point detection. It is interesting to see that the
difference between the two Hessian based methods is so pronounced when combined
with snake clustering.

5.3.2.2 Clustering Methods

It is clear that the fitting method performs poorly compared to the other methods.
This suggests that the assumption that the stent’s contour is shaped like an ellipse is
insufficient. There are, however, specific situations (as in the example of Figure 5.5)
where fitting succeeds and the other clustering methods fail.

For each point detection method, the snake’s performance is lower than that of
chopstick. Although the difference is neglectable in combination with Gaussian cur-
vature point detection, the difference is larger in combination with the other point
detection methods. In combination with the static threshold the snake method is
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Figure 5.10: Bar plot illustrating the performance of all combinations of methods

even outperformed by the fitting method. We suspect that although the snake can
perform good, it is sensitive for spurious points and missing points. It could be that
the performance can improve if more care is taken to tune all parameters, but as this
is very time-consuming, we have not been able to do that.

We propose the combination of Gaussian curvature and the chopstick method,
but remark that Laplacian point detection with chopstick clustering and Gaussian
curvature point detection with snake clustering perform equally well.

5.4 Conclusions and Future work
We have proposed to segment stents in ECG-gated CTA data by detecting the stent
in slices perpendicular to its centreline, by first detecting points and then select the
points belonging to the stent by means of a clustering method.

We have discussed four point detection methods and three clustering methods and
evaluated the performance of all combinations with an experiment. We have proposed
a simple yet effective method for streak artifact invariance which is applied in the four
point detection methods. Contrast fluids sometimes cause spurious points, but the
clustering algorithms are all to some extend robust for such points. The proposed
method is to detect points using the Gaussian curvature of the image, and to cluster
the points using the proposed chopstick algorithm.

In future research we plan to use the proposed method and extend our approach to
segment the stent in 3D by following the centreline of the stent. The set of segmented
contour points can be tracked in the volumes that represent the different phases of the
cardiac cycle and will enables us to measure the surface and diameter change during
the cardiac cycle.

Additionally, we plan to research the possibilities in segmenting the stent directly
from the 3D data. In recent years, vessels have successfully been segmented [43]
using 3D differential geometry; the wires of a stent’s metallic framework have similar
geometrical structure to a narrow vessel. Therefore we expect that it is possible to
segment the stent using a similar method.
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6
A comparison of two methods to segment

stent grafts in CT data

This chapter will be published in slightly modified form at the SPIE Medical Imaging
conference in San Diego, USA (2012).

Abstract
This chapter presents the tracking part of the approach to segment the stent in 2D
slices sampled orthogonal to its centerline (Chapter 5). Further, the method is com-
pared with the approach based on the MCP method presented in Chapter 8.

Using annotated reference data both methods were evaluated in an experiment.
The results show that the centerline-based method and the MCP-based method have
an accuracy of approximately 65% and 92%, respectively. The difference in accuracy
can be explained by the fact that the centerline method makes assumptions about the
topology of the stent which do not always hold in practice. This causes difficulties
that are hard and sometimes impossible to overcome. In contrast, the MCP-based
method works directly in 3D and is capable of segmenting a large variety of stent
shapes and stent types.
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Chapter 6. A comparison of two methods to segment stent grafts in
CT data

6.1 Introduction

6.1.1 Purpose

Endovascular aneurysm repair (EVAR) is an established technique, which uses stent
grafts to treat aortic aneurysms in patients at risk of aneurysm rupture [27, 53, 125].
The long-term durability of these stent grafts is affected by the applied stresses and
hemodynamic forces, which may be reflected by the movements of the stent graft
itself during the cardiac cycle. Late stent graft failure is a serious complication in
endovascular repair of aortic aneurysms [16, 28, 54, 80, 88, 100], such as the formation
of endoleaks (blood flow into the aneurysm sac) that can result in aneurysm expansion
and rupture [81, 82, 106]. Better understanding of the motion characteristics of stent
grafts will likely be beneficial for designing future devices. In addition, these data can
be valuable in predicting stent graft failure in individual patients [74, 75].

Applying ECG-gated CTA [45] provides three dimensional datasets at different
phases of the cardiac cycle. This allows 4D visualization of the scanned object and
enables the investigation of its temporal behavior. ECG-gated CT has been used to
study the motions of aneurysms [49, 91, 119] and stent grafts [74, 108]. In recent work
[62] it was found that ECG gating is a suitable technique for studying the expected
motions in the stent graft and vessel wall in abdominal aortic aneurysm (AAA).

A model that enables capturing material properties and high level knowledge about
the stent graft would be a valuable tool to gain more insight into the stent’s in vivo
behavior [74]. Such a model can also help in performing more reliable (fluid dynamics)
simulations, which is important for improving current stent designs [17, 68].

6.1.2 Contribution

In [65] we proposed a method to segment the stent graft in slices sampled orthogonal to
the stent’s centerline. In the current work we complete this approach by applying the
method recursively while tracking along the centerline of the stent. In [66] we proposed
a method to segment the stent graft using a more direct approach by applying the
minimum cost path method in 3D.

In the current work we discuss the differences between the two methods. In addi-
tion, we performed experiments in which the produced geometric models were com-
pared with a reference model annotated by three experts.

6.2 Method

6.2.1 Modeling the stent

The result of both algorithms is a geometric model that represents the wire frame
of the stent as an undirected graph, with nodes placed at the corners and crossings
of the frame, and the edges between the nodes representing the wires (Figure 6.1).
This kind of model (also known as a spatial graph [6]) can be applied to different
stent types, and represents the topology of the stent’s frame in a concise and natural
way. In the current work we only focus on the Zenith stent graft (Cook, Bloomington,
USA), which has a zigzag pattern (Figure 6.2a).
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Node

Edge

(a) (b)

Figure 6.1: Example graphs that describe a geometric model of a stent frame. The
edges between the nodes represent the physical wire frame of the stent. Nodes are
placed at corners (a) and crossings (b).

Figure 6.2: Illustration of how the stent can be approximated as a series of stacked
contours. (a) shows a volume rendering of the stent and a slice orthogonal to its
centerline. (b) shows a schematic illustration of contours perpendicular to the stent’s
centerline.

6.2.2 Segmentation via centerline tracking

A stent has a tubular structure, sometimes with branches, and can be approximated
by a series of stacked contours which are orthogonal to the centerline (Figure 6.2). In
the 2D images sampled perpendicular to its centerline, regions with high CT-values
(typically above 500 HU) exist where the metallic frame of the stent penetrates the
image. These regions have high CT-values and—due to their “pointy” structure—well
suited for point detection.

The approach to segment the stent in these 2D images is to first detect a set of
interest points, after which a clustering algorithm is applied to find the points that are
on the wire of the stent. This process is then repeated in an iterative fashion, while
tracking along the centerline of the stent. At the end of this process, a 3D geometric
model of the stent is obtained.

6.2.2.1 Segmenting stent points in 2D slices

The method for segmenting the stent in 2D slices was first proposed in [65]. First,
the pointy structures in the image are improved by taking the product of Eigenvalues.
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This measure, also known as the Gaussian curvature, can be expressed using image
derivatives: ∂2L

∂x2 · ∂
2L
∂y2 , where L is the 2D image. A threshold is applied to the

resulting image to find a set of points. Next, the stent points are selected by means
of a clustering algorithm. A custom method was developed that uses a virtual stick
to select the stent points in an iterative fashion. The result of the clustering method
is a set of points that represent the contour of the stent. By fitting a circle on these
points, an estimate of the radius and center position are obtained, which are used
during centerline tracking.

6.2.2.2 Centerline estimation

An initial centerline estimate is obtained by letting the user annotate two seed points.
Hereafter, the centerline estimate is updated using the center positions obtained by
the 2D stent point segmentation algorithm. Unfortunately, this center position is a
rather coarse estimate because it depends on the contour points only, and can differ a
few mm between subsequent slices. Therefore a global centerline tensor is maintained,
which is updated with the center positions using a predetermined weight factor. This
causes the centerline to be rather rigid, which is why extra seed points are sometimes
necessary to handle sharp bends in the stent.

6.2.2.3 Centerline tracking

To obtain an initial set of contour points, the 2D segmentation algorithm is applied
to a slice sampled perpendicular to the centerline. From the number of detected
contour points, the expected number of corners in the current "ring" is calculated
(Figure 6.2a).

A new slice is sampled a small distance further along the centerline. The new
found center position is used to update the centerline estimate, and the detected
contour points are processed (section 6.2.2.5). If the new radius is smaller than 75%
of the current radius, there is potentially a bifurcation (section 6.2.2.4).

This process is repeated until all expected corner points are detected. Next, the
same process is performed, but in the opposite direction. When finished, a single ring
of the stent is segmented (Figure 6.3b).

Next, the algorithm "jumps" from the upper nodes in the direction of the centerline
estimate, over a distance dring. If this new position is inside the stent, a new ring
is segmented. In this fashion all rings of the stent are segmented until a bifurcation
or the end of the stent is reached. In case of a bifurcation, both legs are processed
individually.

6.2.2.4 Bifurcations

A potential bifurcation is found when the new found radius is smaller than 75% of the
previous radius. To verify that that there is indeed a bifurcation, the radius calculated
a certain distance further along the centerline should be smaller than 75% as well.

The detected center position is located in one of the branches. The center of
the other branch can be estimated by mirroring the center position with respect to
the centerline. These two points are used as seed points to segment the individual
branches.
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(a) (b)

Figure 6.3: Illustration of how the contour points are detected (a), and an example
result (b). In (b) one can observe the corner points which will form the nodes of the
geometric model.

3D image Graph ModelNodesDetect

seed points

Find

edges

Process

graph

Figure 6.4: Flowchart illustrating the three processing steps to extract a geometrical
model from the CT data.

6.2.2.5 Stent modeling

In each slice a set of potential stent points is found. By connecting points in consec-
utive slices, a model of the stent can be realized. For every point in the new slice the
distances to all points in the previous slice are calculated. If this distance is less than
a dpoint amount of pixels, a connection is made (Figure 6.3a). As the data is relatively
noisy, the point detection algorithm can sometimes miss points. To deal with this, the
concept of virtual points is introduced. When a stent point is not present in the new
slice, a virtual point is created instead. Adding virtual points can be done multiple
times, until a real point is found at the approximate location. If this does not happen
in nvirtual slices, the point is discarded as an artifact.

In cases where a single point in the new slice is connected to two points in the
previous slice, a corner point is detected (Figure 6.3a). This point is marked as a
node (Figure 6.3b) and is used to build the geometric model. After processing a ring,
a node is placed at the end of any string of points that is a "loose end". In this way,
corner points can be detected even if one of its "legs" was not detected.

6.2.3 Segmentation via the minimum cost path method

The second method segments the stent graft in 3D by finding the optimal paths
between a large set of automatically detected seed points. This method was first
proposed in [66]. The method can be divided into three steps, which are illustrated
in the flow chart in Figure 6.4. For completeness, the method is briefly discussed in
the following subsection.
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C B

A

(a)

C B

A

(b)

C B

A

(c)

Figure 6.5: Illustration of three meeting fronts in the MCP algorithm. The black
circular shapes indicate seed points A, B and C. In (a) the fronts do not yet meet. In
(b) front A meets front B, and the path is traced. A few iterations later (c) a third
front meets with the first, connecting seed points A and C.

6.2.3.1 Detection of seed points

In the first step, a set of seed points is found by searching the volume for voxels
subject to three criteria: 1) The voxel intensity must be a local maximum. 2) The
voxel intensity must be higher than a predefined threshold value. 3) The voxel must
have a direct neighbor with an intensity also above this threshold value.

6.2.3.2 Finding the optimal paths

In the second step, the seed points are connected using a modified version of the
minimum cost path (MCP) method. The MCP method can be used for segmentation
of vessels and other structures (e.g. [24, 30, 38, 47, 55, 99, 121]). The advantages of
this method are that it can be implemented in a computationally efficient way, and
that it can easily be modified to make it more suitable for a specific problem, see for
example [60] and [24].

To use the MCP method for stent segmentation, it is modified such that the fronts
evolve from all the seed points found in the seed point detection step. Connections
between the nodes are detected when two fronts collide, and the paths between the
points are found using a backtrace map that is maintained during the evolution of
the front.

The result of the MCP algorithm is a graph consisting of nodes (the seed points)
connected by edges. Each edge is associated with a path of voxels connecting one node
to another. However, many of these edges are false edges and have to be removed.

6.2.3.3 Graph processing

In the third step, the false edges are removed using graph processing techniques.
For this purpose, two scalar values are associated with each edge. The first is α,
the maximum cumulative cost on the path. It represents the weakness (i.e. inverse
strength) of the edge. This value is used to establish the order of the edges; a stronger
connection (lower α) is preferred over a weaker one. The second scalar value is β,
the minimum intensity (the CT-value in Hounsfield Units) on the path. Due to the
definition of CT-values (-1000 representing air and 0 representing water) this value
has a physical meaning and represents the quality of the edge; it is used to determine
whether an edge should be removed or not.
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6.3. Experiments and results

The processing of the graph occurs in multiple different passes. Firstly, weak edges
are removed based on the expected number of edges for each node, which is two for
the Zenith stent graft. The weakness value α is used to establish the weakest edges
to consider for removal, and the quality measure β is used to determine whether an
edge should be removed. Secondly, a clean-up pass is performed to remove redundant
edges; an edge is found redundant if there is a path of one or two stronger (i.e. lower
α) edges that connect the same nodes. Thirdly, corners are detected in the wire,
and nodes are placed at the positions that have the highest curvature. Hereafter the
graph is cleaned up again. Fourthly, crossings are detected and nodes are added to
represent them. Finally, after a final clean-up step, all the paths are smoothed.

6.3 Experiments and results

To quantify the accuracy of the two algorithms, the geometric models obtained by the
algorithms were compared with annotated reference data. The segmentation of the
stent contour points in 2D slices was already quantitatively studied in earlier work
[65]. For the MCP-based method, the performance was already studied extensively
in [66].

6.3.1 Materials

ECG-gated CT data of 6 different patients was obtained using a Siemens Somatom
64-slice CT scanner (Siemens Medical Solutions, Erlangen, Germany). A rotation
time of 0.37 s, a pitch of 0.34, and 2 × 32 × 0.6 mm2 collimation were used. The
effective tube current (per rotation) time product was 180 mAs and the tube voltage
was 120 kVp. Each volume was reconstructed using the B36f reconstruction filter
and resulted in approximately 300 slices of 512 × 512 voxels. The slices (with a
thickness of 2 mm) were spaced 1 mm apart, and the resolution in the xy plane was
approximately 0.5 mm. Retrospective gating was applied to obtain 10 (equal distant)
cardiac phases. The seven most diastolic phases were averaged to obtain a single
volume for the segmentation algorithms to operate on [66]. The resulting data were
manually cropped to 256× 256× 256 voxels to reduce the memory requirements.

For the purpose of creating a reference graph, two dimensional images of unfolded
pieces of stent were obtained via radial raycasting. Virtual cylinders were manually
aligned with the stent’s centerline, and given a diameter slightly larger than that of
the stent. Rays were projected (using maximum intensity projection) from the axis
onto the face of the cylinder to obtain an unfolded image of the stent (Figure 6.6a).
Since a bifurcation cannot be unfolded in this manner, only tubular sections without
bifurcations were used. This resulted in 12 unfolded stent images.

An annotation tool was developed which could be used to annotate a graph in the
2D image of the unfolded stent. Using the mouse, nodes could be created, repositioned
and removed, and edges between the nodes could be defined. Three trained observers
(an experienced radiologist, an experienced vascular surgeon and a computer scientist)
annotated the stent’s frame using the annotation tool. Because the (x, y, z) location
in the original volume was known for each pixel in the unfolded images, a three
dimensional graph could be obtained from the experts’ 2D annotations (Figure 6.6b),
which served as a reference to evaluate the two algorithms. In earlier work [66] it was
found that the consensus between the different annotators is as high as 98%, which

63



i
i

i
i

i
i

i
i

Chapter 6. A comparison of two methods to segment stent grafts in
CT data

(a) 2D image and annotations (b) Reference graph

Figure 6.6: Illustration of an example image used for the manual annotations (a),
obtained using radial raycasting, and the resulting 3D reference graph (b).

suggests that the reference data is a good approximation of the real topology of the
stent.

To quantify the correspondence between two graphs, the edit distance [15] was
used; the score is based on the number of operations to transform one graph into the
other. The final score is expressed using the Dice Similarity Coefficient (DSC) [26]:

DSC =
2 ·Nmatch

(Nmatch +Nmiss) + (Nmatch +Nwrong)
· 100% (6.1)

where Nmatch represents the number of true positives, and Nwrong and Nmiss are the
number of false positives and false negatives, respectively.

6.3.2 Results

Multiple experiments were performed using the annotated reference data. The refer-
ence data was divided into a training set containing 4 stent pieces (186 edges in total)
obtained from 4 different patients, and a test set containing 8 stent pieces (481 edges
in total) obtained from 6 different patients. The training set was used for parameter
tuning and the test set for measuring the accuracy of the algorithm. The final results
are shown in Figure 6.7. Example results for both methods are shown in Figure 6.8.

6.4 Discussion

6.4.1 Training

For the results of tuning the parameter values of the MCP-based method we refer to
[66]. For the centerline method, dpoint = 2.0 was found to provide the best results.
The value of dring was found to have little influence on the result; as long as the
algorithm lands somewhere inside the next ring it is able to process the ring.

6.4.2 Accuracy

The results in Figure 6.7 clearly show that the MCP-based method outperforms the
centerline-based method. This can also be seen from visual inspection of the results
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6.4. Discussion

Figure 6.7: Illustration of the accuracy of the two algorithms, measured using the 8
stent pieces from the test set. (“alg" stands for the proposed algorithm, “obs" stands
for observer.)

(a) Centerline-based method (b) MCP-based method

Figure 6.8: Illustration showing two example results for both methods.

in Figure 6.8.

6.4.3 Advantageous and limitations of the centerline method

An advantage of the centerline-based approach is that part of the algorithm is 2D,
which makes visualization and algorithm design easier (for that part of the algorithm).
However, the model of the stent as a series of stacked contours does not always hold,
which makes further processing much harder, and is the root of several fundamental
limitations.

For example, in handling bifurcations, it was found that although the expected
location of both branches is accurate, the tracking of the branches failed in many
cases, because the first part of the branch is usually embedded inside the trunk of the
stent, causing problems with detecting the contour points. Similarly, when two rings
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of the frame of the stent overlap, these rings are not segmented correctly.
Due to the inaccurate nature of the center estimate, the weighting factor to update

the global centerline tensor should be very low. This causes the centerline to be so
rigid that the algorithm cannot track sharp bends in the stent, particularly in the
bifurcated branches. Furthermore, the center location estimate can sometimes be
incorrect, particularly when the slice is sampled somewhere in between two rings.
Although absurd results can be detected and ignored, this does sometimes cause the
centerline to be updated in the wrong direction.

6.4.4 Advantageous and limitations of the MCP-based method
The MCP-based method avoids these problems because it works directly in 3D. It
makes no assumption about the stent shape, not even that it is tubular. Therefore
the bifurcations should in principal not cause any problems, although this cannot be
verified with the current experimental method. The generic nature of the algorithm
also means that the method can be applied to other stent types [66].

A downside of the fact that this method makes little assumptions about the topol-
ogy of the stent is that it can also cause it to produce incorrect wires that for example
run via calcifications. Another downside of this method is that it will detect struc-
tures on other high intensity data, such as the spinal cord or coils. Fortunately, these
structures can easily be removed by user interaction.

6.5 Conclusions
Two methods were compared for the segmentation of stent grafts in AAA. The quan-
titative experiments show that the centerline-based method and the MCP-based
method have an accuracy of approximately 65% and 92%, respectively. The dif-
ference in accuracy can be explained by the fact that the centerline method makes
assumptions about the topology of the stent which do not always hold in practice.
This causes difficulties that are hard and sometimes impossible to overcome. In con-
trast, the MCP-based method works directly in 3D and is capable of segmenting a
large variety of stent shapes.
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7
Initial steps towards automatic

segmentation of the wire frame of stent
grafts in CT data

This chapter is published in slightly modified form at the EMBS Benelux Chapter
conference in Enschede, The Netherlands (2009) [60].

Abstract
This chapter presents an approach to segment the stent in 3D by tracking along
the wires of its frame. Three tracking methods are proposed and compared in an
experiment. A 2D test image was created by obtaining a projection of a 3D volume
containing a stent. Ten versions of this image were obtained by adding different noise
realizations. Each algorithm was started at the start of each of the ten images, after
which the traveled paths were compared to the known correct path to determine the
performance. Additionally, the algorithms were applied to 3D CT data and visually
inspected.

The results show that the minimum cost path (MCP) is very suitable for tracking
short pieces of wire of the frame of the stent. However, determining crossings and
corners in the wire is difficult with this tracking approach. Therefore we decided to
apply the MCP method on a set of seed points to segment the wire pieces, which
resulted in the approach presented in Chapter 8.
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Chapter 7. Initial steps towards automatic segmentation of the wire
frame of stent grafts in CT data

7.1 Introduction

Endovascular aortic replacement (EVAR) is an established technique, which uses stent
grafts to treat aortic aneurysms in patients at risk of aneurysm rupture [12]. The
long-term durability of these stent grafts is affected by the stresses and hemodynamic
forces applied to them, and may be reflected by the movements of the stent graft
itself during the cardiac cycle. Applying ECG-gated CTA [45, 91, 65] provides three
dimensional datasets at different phases of the cardiac cycle, and thus provides insight
in the stent’s motion. These data can be used to calculate the forces caused by the
hemodynamics [62]. However, this requires obtaining the geometric model of the
stent’s frame in the form of connected landmarks placed at corners and crossings.

In literature, several studies have been published on the segmentation of blood
vessels. However, two-step approaches [123], which first segment the vessel using a
vessel measure [43] followed by centerline extraction, are not suitable because of the
gaps in the wire (caused by artifacts) and its sharp corners compared to blood vessels.
Methods that fit spheres/ellipsoids to the vessel (e.g. [8]), and methods that segment
the contour in slices perpendicular to the vessel centerline (e.g. [76]), will not work
due to the small diameter of the wire (1 to 3 voxels) and its sharp corners. Region
growing methods [13] have problems with leaks and gaps and need a second stage to
find the geometry from the segmented voxels. Methods that use the minimum cost
path method [33] are robust against gaps and artifacts (e.g. [30, 122]). However,
these method cannot be applied in their default form since it requires the selection of
a start point (and often an end point).

We propose three tracking algorithms that finds the optimal path along the stent’s
wire, and compare them in an experiment. The proposed methods are applicable to
both 2D and 3D (anisotropic) data.

7.2 Methods

The basic assumption of the proposed methods is that once a position on the wire
of the stent is known, a next position along the wire can be calculated with great
confidence. Given a 3 dimensional image V (x) with x = (x, y, z), the algorithm
places multiple objects inside the volume, which we refer to as walkers. These walkers
are initially positioned in a regular grid with a certain spacing in mm. Next, each
walker moves to the voxel in its local environment that has the highest intensity, after
which each walker will proceed autonomously through the data, while tracking the
wire frame of the stent.

7.2.1 Method A: 1D growing

In each iteration, this method compares its second order neighbors (i.e. its 8 or 26
neighbors for 2D and 3D, respectively) and selects the neighbor with the highest
intensity. If the intensity of the selected pixel/voxel is above a certain threshold, it
will be the current position for the next iteration, otherwise the walker is discarded.
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7.2. Methods

Figure 7.1: Illustration of the two 2D smoothed COM kernels and the direction-
dependent weighting kernel.

7.2.2 Method B: directional center of mass
The second proposed method uses a modified version of the center-of-mass (COM)
method, in which the kernels are Gaussian smoothed and multiplied by a direction-
dependent weighting kernel. The Gaussian smoothing is applied to suppress the
influence of voxels further away from the kernel center, and the weighting kernel is
applied to maintain motion in the direction of the previous step (Figure 7.1). Since
the smoothed COM kernel can be represented by Gaussian derivative kernels, this
operator can be considered a gradient operator biased for a certain direction.

We describe the elements of the direction dependent weighting kernel as wk, with
k = (kx, ky, kz) the kernel coordinate relative to the center of the kernel. Given the
direction of the previous step d, the angle for each kernel element is αk = arccos(k/|k|·
d/|d|). The weights of the kernel are calculated with:

wk(α) = cos(αk) + 0.5. (7.1)

Replacing αk gives:

wk(x,d) =
x

|x|
· d

|d|
+0.5. (7.2)

Each iteration, a patch of data p is sampled, centered around the current position.
For each dimension, this patch is multiplied with the corresponding Gaussian deriva-
tive kernel and with the weighting kernel to yield the new (unnormalized) direction:

dnew =

(∑
∀k

pkgk,xwk,
∑
∀k

pkgk,ywk,
∑
∀k

pkgk,zwk

)
, (7.3)

where gk,x, gk,y and gk,z represent the Gaussian derivative kernels for the x, y and
z direction, respectively. Next, dnew is combined with the old value of d such that
the angle between the old and the new direction is limited by a predefined value.
This angle threshold gives control over the walkers’ affinity to proceed in the same
direction, and thus prevents the walker from “making a u-turn”.

The new position is determined by selecting the voxels which are in the found
direction, and choosing the one with the highest intensity.

7.2.3 Method C: minimum cost path
The third proposed algorithm is based on the minimum cost path algorithm [33, 122],
which is applied in a step-by-step tracking approach. Given the speed (representing
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Algorithm 7.1 The minimum cost path algorithm
01 init the time map tx =∞ ∀x
02 init the frozen map fx = 0 ∀x
03 init tx = 0 for the start nodes
04 insert the start nodes in list L
05 while not isempty(L):
06 take node m from L with min. tm
07 set fm = 1
08 for n in neighborsOf(m):
09 if fn == 0:
11 d = eucledianDist(n,m)
12 t = tm + d/sn
13 if t < tn:
14 tn = t
15 dn = dm + d
16 if n not in L:
17 insert n in L

Figure 7.2: Illustration of the proposed minimum cost path approach. The front (the
voxels in L) moves outward until the cumulative distance of the path is larger than
dmin.

the inverse cost function) in each voxel sx, the algorithm iteratively calculates the
time tx it takes to travel from the start node to any other node in the image (see
algorithm 7.1). The fastest (minimum cost) path can be found to any point x by
backtracking in the resulting time map.

We modified the algorithm such that it stops as soon as a distance dx larger
than dmin is encountered (Figure 7.2). Since the algorithm selects the node with the
minimum cumulative cost (tx) at each iteration, the first node x for which dx > dmin
is the node that is “traveled easiest to”, and therefore has the highest probability of
being positioned on the same wire as the previous node.

To be robust against artifacts, only the first half of the path from the start node
to x is used. This path is appended to the total walked path and its last node will
be the start node for the next iteration. At the start of the next iteration the last 20
nodes in the total walked path are set frozen to prevent backtracking.

The speed sx is calculated with:

sx = 2V (x)/δ, (7.4)

where δ is a scalar number. Using this speed map has the effect that the path
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7.3. Experiments

(a) (b)

Figure 7.3: Illustration of the 2D test image (a) and the used mask to calculate
performance(b).

through a single voxel with a CT-value of a, is equally fast as another path through
two voxels with CT-values of a + δ. In other words, the optimal path has a strong
affinity for high intensity voxels, rather than taking the shortest route. This prevents
the algorithm to cut the sharp corners present in our data. In our method we used a
value of δ = 100.

7.3 Experiments

A 2D test image (Figure 7.3a) was created by obtaining a projection of a 3D volume
containing a stent. The image was modified to connect the three parts of the stents’
frame and thus create a single path. Ten versions of this image were obtained by
adding different noise realizations (Gaussian noise with a standard deviation of 75
CT-values). A walker was placed to walk down the path of the ten images, after
which the traveled paths were compared to the known correct path (Figure 7.1b) to
determine the performance of each method. Beforehand, the same setup was used
(but with different noise realizations as in the experiment) to choice the optimal
parameters for each method.

Additionally, the algorithms were applied to 3D clinical data using multiple walk-
ers, and the result was visually inspected.

7.4 Results and Discussion

From the average correspondence of the walked paths with the correct path (Table 7.1)
it can be seen that the method A performed poorly, while method C performed
excellent. The traveled paths for each method (Figure 7.4) confirm these findings.
Visual inspection of the method applied to 3D data (Figure 7.5) shows the same
trend.

During the process of the experiments, it was found that the performance of
method B is sensitive to the chosen parameters (such as the scale of the kernels and
the angle limit). In contrast, method C was very robust for the choice of its parameter
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Method: A B C
Performance: 0.32 0.88 1.00

Table 7.1: The quantitative results of the experiments.

(a) (b) (c)

Figure 7.4: Illustration of the walked paths of the three methods for the 10 noise
realizations.

values (dmin and δ).
We note that method C can be seen as a generalization of method A; instead of

selecting the next position from the direct neighbors, the most probable voxel at a
certain distance from the current position is selected. The concept of incorporating
a larger neighborhood in determining the most probable next position is also used in
method B. However, method B is sensitive for nearby structures (e.g. other wires)
and has problems with sharp corners.

In the current method, the walkers are unaware of each other. By connecting the
walked paths when two walkers meet, the walkers should be able to work together to
perform the segmentation task.

7.5 Conclusions and Future Work
We have described and compared three methods to track the wire frame of the stent
graft in 3D CT data and 2D projections thereof. The best performing method is
based on the minimum cost path method and is capable of obtaining near-perfect
segmentation of the stent. The method is robust to unforeseen situations and variation
in its parameters.

Future research will focus on establishing a geometrical model by determining the
corner points and the crossings from the results of the proposed method.
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7.5. Conclusions and Future Work

(a) (b) (c)

Figure 7.5: Illustration of the found paths of multiple walkers in a 3D volume.
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8
Automatic segmentation of the wire frame

of stent grafts from CT data

This chapter is published in slightly modified form in Medical Image Analysis (2011)
[66].

Abstract
This chapter presents a stent segmentation algorithm that is based on the minimum
cost path (MCP) method and works directly in 3D. It consists of three steps: the
detection of seed points, finding the connections between these points to produce a
graph, and graph processing to obtain the final geometric model in the form of an
undirected graph.

Using annotated reference data, the method was optimized and its accuracy was
evaluated. The experiments were performed using data containing the AneuRx and
Zenith stent grafts. The algorithm is robust for noise and small variations in the used
parameter values, does not require much memory according to modern standards,
and is fast enough to be used in a clinical setting (65 and 30 seconds for the two
stent types, respectively). Further, it is shown that the resulting graphs have a 95%
(AneuRx) and 92% (Zenith) correspondence with the annotated data. The geometric
model produced by the algorithm allows incorporation of high level information and
material properties. This enables us to study the in vivo motions and forces that act
on the frame of the stent.
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Chapter 8. Automatic segmentation of the wire frame of stent grafts
from CT data

8.1 Introduction

8.1.1 Clinical context

Endovascular aortic replacement (EVAR) is an established technique, which uses stent
grafts to treat aortic aneurysms in patients at risk of aneurysm rupture [27, 53,
125]. The long-term durability of these stent grafts is affected by the stresses and
hemodynamic forces applied to them, and may be reflected by the movements of
the stent graft itself during the cardiac cycle. Late stent graft failure is a serious
complication in endovascular repair of aortic aneurysms [16, 28, 54, 80, 88, 100], such
as the formation of endoleaks (blood flow into the aneurysm sac) that can result in
aneurysm expansion and rupture [81, 82, 106]. Better understanding of the motion
characteristics of stent grafts will likely be beneficial for designing future devices. In
addition, these data can be valuable in predicting stent graft failure in individual
patients [74, 75].

Applying ECG-gated CTA [45] provides three dimensional datasets at different
phases of the cardiac cycle. This allows 4D visualization of the scanned object and
enables the investigation of its temporal behavior. ECG-gated CT has been used to
study the motions of aneurysms [49, 91, 119] and stent grafts [74, 108]. In recent work
[62] it was found that ECG gating is a suitable technique for studying the expected
motions in the stent graft and vessel wall in abdominal aortic aneurysm (AAA).

Most studies on the motion of stent grafts focus on measuring the stent’s diameter
changes [51] or finding the motion for a sparse set of points on the stent [74]. A model
that enables capturing material properties and high level knowledge about the stent
graft would be a valuable tool to gain more insight into the stent’s in vivo behavior [74].
Such a model can also help in performing more reliable (fluid dynamics) simulations,
which is important for improving current stent designs [17, 68]. To the best of our
knowledge such a model has not yet been proposed in literature.

One of the major downsides of CT in general, is the exposure of the patient to
ionizing radiation, which can have negative effects on the long term health of the
patient [98, 39]. The dose should therefore be kept as low as possible. However, this
results in higher noise levels and more image artifacts, which can be a problem for
automatic image analysis algorithms that often need high quality data to operate.
Algorithms that can perform their task on low dose data can therefore contribute to
better patient safety.

8.1.2 Contributions

In this work we take an important step towards evaluating the motion of stent grafts
in vivo: the segmentation of the stent graft and its representation using a geometric
model.

We propose a geometric model that represents the wire frame of the stent as an
undirected graph, with nodes placed at the corners and crossings of the frame, and the
edges between the nodes representing the wires (Figure 8.1). This model represents
the topology of the stent’s frame in a concise and natural manner.

The main goal of the present work is to present a method to obtain the geometric
model of the stent’s wire frame from volumetric CT data. The method is fast and
robust for high levels of noise, such that it is applicable to CT data obtained with
relatively low dose. To evaluate the quality of the produced geometric model, we
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Figure 8.1: Example graphs that describe a geometric model of the stent’s frame.
The edges between the nodes represent the physical wire frame of the stent. Nodes
are placed at corners (a) and crossings (b), which makes it possible to model different
stent types. The (change of) angle φ when motion is applied to the model can be
used to estimate the force present in the node (c).

performed experiments in which the produced model was compared with a reference
model annotated by three experts.

8.1.3 Outlook
The geometric models produced by the proposed algorithm enable future studies on
the motion of stent grafts in vivo; the motion field between the cardiac phases (which
can be obtained by image registration) capture the motion of the stent and can be
used to apply motion to the model. This will give quantitative information about
the motion of stent grafts. Subsequently, by incorporating material properties such
as stiffness, and by calculating the change of the angle between two edges, the forces
present at the stent’s frame can be estimated (Figure 8.1c). Both parameters will add
valuable information to the analysis of stent grafts in vivo.

To be useful in future motion analysis, it is of importance that the model precisely
represents the topology of the wire frame of the stent graft; if the model contains
erroneous or missing nodes or edges, the force calculations can produce invalid results.

While the proposed method can be applied to non-gated CT data, in the present
work ECG-gated data was used because of our intentions to study stent graft motion
in the future.

8.1.4 Previous work
Few results have been published for the segmentation of the wire frame of stent grafts
from CT data, despite the need for such a technique to evaluate large 3D datasets.
In preliminary work we segmented the wire frame of the stent in 2D slices [65]. In a
recent work by [75], the stent’s frame (in the thoracic aorta) is found using a statistical
model. They report that a threshold at 2000 Hounsfield Units is sufficient to obtain a
connected set of points belonging to the stent. Unfortunately, our data contains too
much noise (compared to the stent’s intensities) for such a method. This can be due
to differences in the applied dose (which is not not reported in [75]) or in the material
of the stent’s frame.

Several studies have been published on the segmentation of blood vessels in 3D,
which have similarities with the wires of the frame of the stent (Figure 8.2) and may
therefore be of interest (see [79] and [59] for an overview of vessel segmentation meth-
ods). One common method is the two-step approach [44, 57, 84, 123], which first
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(a) AneuRx (b) Zenith

Figure 8.2: Illustration of iso-surface renderings from CT data of two different types
of stent grafts.

segments the vessel using a vessel measure [43] followed by centerline extraction. Un-
fortunately, this method is not suitable for our research question because of gaps that
can occur in the wire due to artifacts, and the sharp corners of the wire which blood
vessels do not posses (Figure 8.2). Methods that fit a series of spheres or ellipsoids to
the vessel [8, 126], and methods that segment the contour in slices perpendicular to
the vessel centerline [50, 76] assume a solid vessel with a diameter of several voxels.
Due to the small diameter of the stent’s wire (1 to 3 voxels) and its sharp corners
these methods are also not suitable. Region growing methods [13] have problems
with leaks and gaps and need a second stage to find the geometry from the segmented
voxels.

In recent work [60] we have proposed three tracking algorithms to find the optimal
path along the wire of the stent, and compared them in an experiment. It was found
that the method based on the Minimum Cost Path (MCP) method produced the best
results. In the current work, we use the MCP method to segment the stent in a direct
manner rather than applying a tracking approach. Additionally, the current work
describes the method to create a geometrical model from the results obtained by the
MCP method.

8.1.5 Outline

First the algorithm to calculate the geometric model from the CT data is discussed
in three steps in section 8.2. Next, in section 8.3, we discuss the experiments that
were performed to determine the optimal values for the algorithm’s parameters, and
the experiments to evaluate the accuracy of the algorithm. Finally, the results are
discussed in section 8.4.

In this work we consider two types of stent grafts which are commonly used in our
institution to treat patients with AAA: the AneuRx (Medtronic, Minneapolis, USA)
and the Zenith (Cook, Bloomington, USA) stent graft (Figure 8.2). The proposed
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Figure 8.3: Flowchart illustrating the required processing steps to extract a geomet-
rical model from the CT data.

method should be general enough to be capable of segmenting the wire frame of both
types of stent grafts.

8.2 Methods

Given are multiple volumetric images V (x) → R with x = (x, y, z), acquired from a
CT scanner using ECG-gating; each image represents a phase in the cardiac cycle.
In a pre-processing step of the proposed segmentation algorithm, nphases volumes are
averaged to reduce the noise at the cost of increased motion artifacts. The averaged
phases are taken from the end-diastole, which suffers the least from motion artifacts
[31]. In section 8.3 the optimal number of phases to average is determined in an
experiment.

The proposed method can be divided into three steps, which are illustrated in the
flow chart in Figure 8.3. First, seed points are detected that are likely to be on the
wire of the stent, resulting in a set of nodes pi = (x, y, z) with i ∈ [0 . . . N − 1] and
N the number of nodes. These nodes represent a graph without edges. In the next
step, the edges between the nodes are found using a modified version of the MCP
method, resulting for each node pi in a set of edges eij , each connecting it to another
node pj . Finally, the resulting graph is processed by introducing new nodes and
removing unwanted nodes and edges. These three steps are discussed in the following
subsections.

8.2.1 Detecting the seed points

A set of seed points is found by searching V for voxels subject to three criteria:

• The voxel intensity must be a local maximum.

• The voxel intensity must be higher than a predefined threshold value vseed.

• The voxel must have a direct neighbor with an intensity also above this threshold
value.

Because the frame of the stent has an intensity that is (locally) constant, local
maxima—and thus the resulting seed points—are distributed homogeneously along
the wire frame of the stent. Since the diameter of the wire of the stent graft is
much smaller than the voxels size, the partial volume effect causes the center of wire
crossings (in the AneuRx stent graft) to always be a local maximum.
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8.2.2 Connecting the seed points

The seed points are connected using a modified version of the minimum cost path
(MCP) algorithm. The MCP method can be used for segmentation of vessels and
other structures (e.g. [24, 30, 38, 47, 55, 99, 121]). It is a level set method in which
a front is propagated monotonically following a (non-negative) cost function. The
advantage of this method is that it can be implemented in a computationally efficient
way. It is a form of Dijkstra’s algorithm [33] that finds the shortest path in a graph of
connected nodes. In the MCP method the nodes are represented by the pixels/voxels,
and the edges are implicitly defined by the grid; each node is connected to its direct
neighbors.

8.2.2.1 Theory

Given a set of seed points P = {p1,p2, . . . ,pn} (with pi = (x, y, z)) and the costs
in each voxel C(x) → R, the algorithm iteratively calculates the cumulative costs
D(x) → R it takes to travel from the seed points to any other point in the image
(Algorithm 8.1). The minimum cost path from any voxel x = (x, y, z) to the seed
point can be found by backtracking using D.

A major difference with respect to Dijkstra’s algorithm is that the costs are defined
at the voxels (i.e. nodes) rather than at the edges. Therefore, voxels n and m should
contribute equally to the transition cost. This fact is sometimes neglected in literature,
in which case line 9 in Algorithm 8.1 is replaced by d = D(m)+C(n), which resembles
the update rule of Dijkstra’s algorithm.

By weighting with the Euclidean distance between the voxels, the method corrects
for the larger distance for diagonal voxels, and can account for the anisotropicity of
the data. In applications where the cost and cumulative cost represent a distance
measure, it is advantageous to consider the 8 (2D) or 26 (3D) nearest neighbors
rather than only the 4 (2D) or 6 (3D) neighbors; the shape of the front is in that case
octagonal rather than square, which results in smaller discretization errors.

A related method is the Fast Marching method [105] which replaces line 9 in
Algorithm 8.1 with a formula to solve the Eikonal equation. It therefore remains
(more) consistent with the continuous formulation of the problem, which significantly
reduces the discretization errors. However, these errors are not significant in our
situation since the paths are relatively short and the intensity difference between the
wire and the background is relatively large. Additionally, the backtracking algorithm
in the resulting cumulative cost map—which is applied relatively often in the proposed
method—is considerably more easy and faster for the MCP method.

8.2.2.2 Cost function

Since the stent is made of metal, it is represented in the data V (x) with relatively
high CT-values compared to the soft tissue in the human body. Therefore we define
our cost function such that an increase in CT-value results in a decrease in cost:

C(x) = 2−V (x)/vaff , (8.1)

where vaff is a predefined value representing the algorithm’s affinity for high inten-
sities. Consider two hypothetical paths, of which one is exactly twice as long as the
other but running through voxels of higher intensities. The above formula implies
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Algorithm 8.1 Pseudo code for the normal Minimum Cost Path method.
01 function MCP(C):
02 init cumulative cost map D(x) =∞ ∀x
03 init D(pi) = 0 for all seed points
04 insert the seed points in list L
05 while not isempty(L):
06 take voxel m from L with minimum D
07 for n in neighborsOf(m):
08 δ = euclideanDist(n,m)
09 d = D(m) + 1

2
· δ · (C(n) + C(m))

10 if d < D(n):
11 D(n) = d
12 if n not in L:
13 insert n in L
14 return D

that the longer path is preferred if the intensities over the path are at least vaff
Hounsfield Units higher. This increased affinity for high values over a shorter path
prevents the algorithm from cutting (sharp) corners.

8.2.2.3 Implementation

The MCP method can easily be modified to make it more suitable for a specific
problem. For example, in [60] the algorithm executes until a certain distance from
the seed point is reached, and in [24] the traveled distance of the front compared to
the largest travelled distance is used as a measure to freeze the front and thus prevent
leaking outside the vessel.

In the present work the MCP algorithm is modified (Algorithm 8.2) such that
the fronts evolve from all the seed points pi found in the seed point detection step
(section 8.2.1). Connections between the nodes are detected when two fronts collide.
As the fronts propagate, two maps are maintained (both maps are initialized with all
values to −1). The first is the backtrack map B that specifies for each point what
the previous point was. The second is the identification map I, a Voronoi diagram
[5] that specifies for each point x from which seed point it originates: I(x)→ i, maps
point x to seed point pi. Consequently, the collision of two fronts can be detected by
testing I(m) 6= I(n) and I(n) 6= −1 (line 10 in Algorithm 8.2). If this test is positive,
an edge eij between nodes pi and pj is created (with i = I(n) and j = I(m)), and
the path between pi and pj is found by backtracing the route using B (Figure 8.4b).
Since it is possible that another (lower cost) path between i and j is found later
(Figure 8.4c), the above check should be performed at each iteration and for each
neighbor. Figure 8.4d shows how the front originating from one seed point partly
replaces another front, thereby changing the identification map I and the backtrack
map B. This illustrates that the paths need to be traced at the moment an edge is
found.

As a stop criterion the value of D(m) is compared to a predefined threshold dmax.
If the threshold is reached, the cumulative cost is at such a level that we can assume
all significant edges have been found.
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Algorithm 8.2 Pseudo code for the proposed (modified) version of the Minimum
Cost Path method.
01 function MCP_connect_seed_points(C):
02 init D(x) =∞, I(x) = −1, B(x) = −1 ∀x
03 init D(pi) = 0 for all seed points pi

04 init B(pi) = i for all seed points pi

05 init I(pi) = i for all seed points pi

06 insert the seed points in list L
07 while not isempty(L):
08 take voxel m from L with minimum D
09 for n in neighborsOf(m):
10 if I(n) 6= −1 and I(n) 6= I(m):
11 makeEdge(n,m)
12 δ = EuclideanDist(n,m)
13 d = D(m) + 1

2
· δ · (C(n) + C(m))

14 if d < D(n):
15 D(n) = d
16 B(n) = m
17 I(n) = I(m)
18 if n not in L:
19 insert n in L
20 return edges

C B

A

(a)

C B

A

(b)

C B

A

(c)

C B

A

(d)

Figure 8.4: Illustration of three meeting fronts. The black circular shapes indicate
seed points A, B and C. In (a) the fronts do not yet meet. In (b) front A meets front
B, and the path is traced. A few iterations later, in (c) a better path (lower D) is
found between A and B. The path is traced again and updated. In (d) a third front
meets with the first, connection seed points A and C.
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Figure 8.5: Flow chart illustrating the process of graph processing.

8.2.3 Graph processing
The result of the MCP algorithm is a graph consisting of nodes (the seed points)
connected by edges. Each edge is associated with a path Pij = [pi, . . . ,pj ] of voxels
connecting one node to another. Although the paths themselves are optimal (in
terms of the cost C), many of these edges are false edges, and must be removed. For
this purpose, two scalar values are associated with each edge. The first is αij , the
maximum cumulative cost D(x) on the path. It represents the weakness (i.e. inverse
strength) of the edge. This value is used to establish the order of the edges; a stronger
connection (lower α) is preferred over a weaker one. The second scalar value is βij ,
the minimum intensity (the CT-value in Hounsfield Units) on the path. Due to the
definition of CT-values (−1000 representing air and 0 representing water) this value
has a physical meaning and represents the quality of the edge; it is used to determine
whether an edge should be removed or not. The processing of the graph occurs in
multiple different passes which are illustrated in Figure 8.5 and described below.

1. Removing weak edges. Weak edges are removed based on the expected
number of edges for each node ne, which is two for the Zenith and four for the
AneuRx stent graft. The algorithm iterates over all nodes pi, and evaluates
their edges. If a node has more than ne edges, the weakest surplus edges are
selected (using αij) and considered for removal: the edge eij is removed if βij
is smaller than the predefined threshold vquality, and if the same criteria are
also met when considering the edge from the node at the other end (pj). If
βij > vquality there is enough evidence to assume the path Pij corresponds to a
wire and the edge eij is considered valid (Figure 8.6a).

2. Clean-up. Next, redundant edges are removed: all connections sij are consid-
ered in the order of decreasing αij , starting with the weakest edge. An edge is
found redundant if there is a path of one or two stronger (i.e. lower α) edges
that connect the same nodes. Next, each cluster (i.e. group of interconnected
nodes that is not connected to any other nodes) is removed if it consist of less
than ncluster nodes, and each tail (i.e. string of nodes) is trimmed if it consists
of less than ntail nodes (Figure 8.6b).

3. Adding nodes at corners. The third pass starts with removing nodes from
the graph that have exactly two edges. The two edges are combined to form
a new edge. Next, all edges are evaluated and new nodes are inserted at the
corners of the wire by searching for points on the path Pij that have maximum
curvature (Figure 8.6c): for each point x on the path, two vectors are calculated,
which each span five positions on the path (corresponding to maximal 5 mm,
which is less than the length of the wires). The angle φ between the two vectors
is calculated (Figure 8.7), and the resulting angle values for all the points in the
edge are smoothed with a Gaussian filter (with a standard deviation of 3 voxels)
to account for the discretization. By detecting local minima in the resulting list
of angles, the point of maximum curvature can be calculated.
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4. Repeat pass 2. Since the graph has changed, new edges can now be marked
redundant. These should be removed before proceeding to the next pass. Fur-
thermore, pass 5 gets rid of many nodes in invalid clusters, which therefore are
now eligible for removal.

5. Adding nodes at crossings. By tracing the paths of two edges from the
same node, the algorithm determines whether the paths are partly the same. In
these cases a new node is inserted at the point where the paths diverge, and the
overlapping parts of the paths are replaced by a single edge (Figure 8.6e) [24].
This pass is not applied if ne = 4, because in that case the nodes are already
correctly positioned at the crossings and this pass would only introduce false
crossings.

6. Repeat pass 2. Since the graph has changed, new edges can now be marked
redundant (Figure 8.6f).

7. Smoothing. Finally, the paths are smoothed using a moving average filter
(with a range of three voxels).

8.3 Experiments

8.3.1 Materials
ECG-gated CT data was obtained for 10 different patients (4 with AneuRx, 6 with
Zenith) using a Siemens Somatom 64-slice CT scanner (Siemens Medical Solutions,
Erlangen, Germany). A rotation time of 0.37 s, a pitch of 0.34, and 2× 32× 0.6 mm2

collimation were used. The effective tube current (per rotation) time product was
180 mAs and the tube voltage was 120 kVp. Each volume was reconstructed using the
B36f reconstruction filter and resulted in approximately 300 slices of 512×512 voxels.
The slices (with a thickness of 2 mm) were spaced 1 mm apart, and the resolution
in the xy plane was approximately 0.5 mm. Retrospective gating was applied to
obtain 10 (equal distant) cardiac phases. The resulting data were manually cropped
to 256× 256× 256 voxels to reduce the memory requirements.

For the purpose of creating a reference graph, two dimensional images of unfolded
pieces of stent were obtained via radial raycasting. Virtual cylinders were manually
aligned with the stent’s centerline, and given a diameter slightly larger than that of
the stent. Rays were projected (using maximum intensity projection) from the axis
onto the face of the cylinder to obtain an unfolded image of the stent (Figure 8.8a).
Since a bifurcation cannot be unfolded in this manner, only tubular sections without
bifurcations were used. This resulted in 18 unfolded stent images: 6 of the AneuRx
stent graft and 12 of the Zenith stent graft. In total there were approximately 700
edges for each stent type.

An annotation tool was developed which could be used to annotate a graph in the
2D image of the unfolded stent. Using the mouse, nodes could be created, repositioned
and removed, and edges between the nodes could be defined. The annotator could
initialize the graph with the (un-tuned) algorithm to alleviate the required work for
the annotator in regions which can be considered “easy”.

Three trained observers (an experienced radiologist, an experienced vascular sur-
geon and a computer scientist) annotated the stent’s frame using the annotation tool.
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Figure 8.6: Illustration of an example of the different steps in the graph process-
ing. For the sake of the example, the dark nodes at the image boundaries are fixed.
Changes are highlighted with red ellipsoids. In (a) the weak (β < vquality) edge e12

is removed because it is found not-expected by both end-nodes. Edge e68 is also not
expected, but its β is high enough to support evidence of a wire, and the edge is thus
not (yet) removed. In (b) e68 is removed because it is redundant and e67 and e78 are
apparently stronger. Further the tail at node 3 is removed, as well as a few tails in
the bottom-left cluster. The bottom-right cluster is removed because it is too small.
In (c) new nodes are placed at corners, and nodes with only two edges are “dissolved".
In (d) the bottom-left cluster is removed. In (e) a node is placed at a crossing. In (f)
node 9 is removed because it is now on a tail.
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φ

Figure 8.7: Illustration of how the path’s curvature is calculated to be able to insert
nodes where the curvature is maximal. The black dots represent voxel positions. The
algorithm selects the voxel for which the angle φ is the smallest.

(a) 2D image and annotations (b) Reference graph

Figure 8.8: Illustration of an example image used for the manual annotations (a),
obtained using radial raycasting, and the resulting 3D reference graph (b).

Because the (x, y, z) location in the original volume was known for each pixel in
the unfolded images, a three dimensional graph could be obtained from the expert’s
2D annotations (Figure 8.8b), which served as a reference to evaluate the proposed
algorithm.

8.3.2 Comparison Method

To compare the geometric model produced by the algorithm with the annotated ref-
erence, a method to compare two graphs is required. In graph theory the edit distance
[15] is a common method to compare two graphs. The method considers the list of
operations on one graph to transform it into the other. A final distance measure is ob-
tained by adding the costs for each edit operation. Since for the geometric model the
edges represent the physical wires, while the nodes are only a way to connect these,
we use a cost of 1 to add or remove an edge, and a cost of 0 to add or remove a node.
Consequently, the edit distance becomes Nmiss +Nwrong, representing the number of
false negatives plus the number of false positives. To produce a score expressed as a
percentage, we apply the Dice Similarity Coefficient (DSC) [26]:

DSC =
2 ·Nmatch

(Nmatch +Nmiss) + (Nmatch +Nwrong)
· 100% (8.2)

where Nmatch represents the number of true positives.
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8.3.3 Results

Multiple experiments were performed using the annotated reference data. The refer-
ence data was divided in a training set containing 6 stent pieces (400 edges in total)
obtained from 6 different patients, and a test set containing 12 stent pieces (946 edges
in total) obtained from 8 different patients. The sets were divided such that in each
set the amount of edges for each stent type is approximately the same. The training
set was used for parameter tuning and the test set for measuring the accuracy of the
algorithm. The experiments and their results are described in the next paragraphs.

8.3.3.1 Parameter tuning

To choose suitable values for the parameters of the algorithm and to study the algo-
rithm’s sensitivity to the chosen parameter values, tuning experiments were performed
on the training set. To tune each parameter (nphases, vseed, dmax, vaff and vquality ),
the algorithm was applied multiple times using a range of different values for the pa-
rameter. Accuracy plots were generated by comparing the resulting models against the
annotated reference data, resulting in one plot per annotator. The resulting accuracy
plots are shown in Figure 8.9. The plots show the optimal value for each parameter,
and also give an idea of how sensitive the algorithm is for the parameter value. The
parameters (and their found optimal values) are listed in Table 8.1. Although the
removal of tails and small clusters has a positive effect on the resulting geometric
model, this cannot be measured in the experiments; because the nodes/edges of tails
and erroneous clusters are in general not inside the cylinder that is compared with
the reference data, removing these edges has no effect on the accuracy measure.

8.3.3.2 Accuracy

An experiment to evaluate the accuracy of the algorithm was performed with the
test set. Using the optimal parameter values found in the tuning experiments, the
algorithm’s results were compared with the results of the three annotators. The
resulting values for Nmatch,Nwrong and Nmiss are given in Table 8.2, and the matching
scores are illustrated in Figure 8.10a. It can be seen that the accuracy is approximately
95% and 92% for the AneuRx and Zenith respectively. In order to assess the quality
of the used reference data, the graphs produced by the annotators were also compared
with each-other (Figure 8.10b).

Figure 8.11 and Figure 8.12 give an impression of the different steps of the al-
gorithm and provide a way to visually assess the quality of the algorithm for the
AneuRx and Zenith stent graft, respectively. In Figure 8.13 and Figure 8.14 surface
rendered images of the geometric models of both stent types is shown. 1 For the
purpose of visualization, clusters of edges not attached to the stent were manually
removed; because the topology of the graph is known, clusters of interconnected nodes
are easily identified and can be removed using an interactive process with just a few
mouse clicks.

1Interactive flash movies of two examples are available at:
http://www.sas.el.utwente.nl/home/almar/stents.html
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Figure 8.9: Results for the parameter tuning experiments. Shown are three lines
(corresponding to the three annotators) for each type of stent graft, and a thick line
indicating the total accuracy.

Parameter Optimal value Description
nphases 7 Number of phases to average
vseed 650 Threshold to detect seed points
dmax 0.06 MCP evolution threshold
vaff 100 High intensity affinity
vquality 1200 Threshold for edge quality
ncluster 8 Minimum cluster size
ntail 3 Maximum tail length

Table 8.1: List of the algorithm’s parameters and the resulting optimal values.
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Stent type Annotator Nmatch Nwrong Nmiss DSC
AneuRx 1 448 16 19 96.2%

2 448 16 26 95.5%
3 442 22 19 95.6%

Zenith 1 470 53 21 92.7%
2 466 57 27 91.7%
3 470 53 23 92.5%

Table 8.2: List of the number of true positives, false positives, false negatives and the
resulting scores in the accuracy experiment.

(a) (b)

Figure 8.10: Illustration of the accuracy of the proposed algorithm (a) and the inter-
observer agreement of the annotators (b), measured using the 12 stent pieces from
the test set. (“alg" stands for the proposed algorithm, “obs" stands for observer.)

(a) MIP of the CT data (b) 2873 seed points (c) 9630 initial edges (d) 1496 final edges

Figure 8.11: Illustration of the different algorithm steps for an AneuRx stent graft.
Shown are a Maximum Intensity Projection (MIP) of the original data (a), the de-
tected seed points (b), the found edges (c), the result after processing the graph (d).
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(a) MIP of the CT data (b) 1732 seed points (c) 4963 initial edges (d) 531 final edges

Figure 8.12: Illustration of the different algorithm steps for a Zenith stent graft.
Shown are a Maximum Intensity Projection (MIP) of the original data (a), the de-
tected seed points (b), the found edges (c), the result after processing the graph (d).

8.4 Discussion

8.4.1 Parameters

From Figure 8.9 it can be seen that the plots for most parameters are relatively
smooth, which implies that small variations in the parameter values do not affect the
accuracy of the algorithm. This means that finding the (global) optimal parameter
values is relatively easy, as there are no local maxima and the parameters have little
effect on each-other. Additionally, this suggests that the algorithm performs con-
sistently on different data using the same parameter values. However, the optimal
parameter values can differ if a different scanner type or different acquisition set-
tings are used. All parameters—except for dmax—have a direct relation to a physical
quantity and are therefore relatively easy to choose.

The plot for nphases (Figure 8.9) shows that this parameter has little effect on the
accuracy of the algorithm. This suggests that the algorithm is relatively robust for
noise. There is a slight decrease after nphases = 3, which can probably be attributed by
the increase in motion artifacts. Further, the plot shows a small peak at nphases = 7
. Whether this peak is significant remains uncertain, but it can be explained as
follows. The pressure present in the abdominal aorta first rises quickly after which it
slowly declines [49, 80, 107]. The phases to average are selected primarily from the
diastolic phase. As more phases are selected for averaging, more phases are included
that are not in the diastolic phase, and the increased motion artifacts will negate the
positive effect of the reduced noise. The peak at the seventh phase can be explained
by the fact that the seventh included phase is usually at the maximum of the pressure
pulse, where the amount of motion is low, and thus causes a relatively large accuracy
increase. Naturally, when a different number of phases are reconstructed, the optimal
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(a) (b)

(c) (d)

Figure 8.13: Illustration of lit surface renders of the resulting models for the 4 datasets
containing the AneuRx stent.
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(a) (b) (c)

(d) (e) (f)

Figure 8.14: Illustration of lit surface renders of the resulting models for the 6 datasets
containing the Zenith stent.
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value of nphases will also change. The relative flatness of this plot is an indication
that the algorithm is relatively invariant to noise; the algorithm performs well even
when applied to a single phase.

The plot for vseed illustrates a clear maximum accuracy around 650 HU (Hounsfield
units). While the materials of which stents are made (stainless steel and nitinol) are
usually expressed in much larger CT-values, the partial volume effect causes the parts
of the stent where the wire is thin to be represented by CT-values around 650 HU. The
accuracy for the AneuRx decays faster because its contrast (in the CT data) is lower
than for the Zenith stent graft. This difference can be explained by the difference
in material or wire diameter. If the value of vseed is chosen too high, too few seed
points are detected in order to segment the stent completely. If the value is chosen too
low, many false seed points are introduced that cannot be cleaned up by the graph
processing algorithm, particularly when contrast fluid was applied during scanning.

The plot for the MCP evolution threshold dmax shows the minimal value to use in
order not to miss any connections between nodes. While higher values will result in
more edges being produced, these are successfully cleaned up by the graph processing
algorithm. The plot for the high intensity affinity parameter vaff shows a broad
optimum around 100 HU.

The plot for vquality illustrates that this parameter has no effect for the AneuRx
stent graft. This suggests that there are usually no extra edges found between nodes.
Although the plot suggests that (for the Zenith stent graft) there is no maximum for
this parameter value, we chose a value of 1200; the situations in which this parameter
is applied (when there are more genuine edges than expected) are relatively rare and
are probably not represented sufficiently in the training data. Fortunately, the value
can be chosen by considering what it physically represents; an edge with a minimum
CT-value of 1200 can only represent bone or a metallic structure. The plot does show
that using values lower than 1200 HU results in erroneous edges.

The values of ncluster and ntail could not be chosen based on experimental data (see
section 8.3.3.1), and their values might therefore not be optimal. Visual inspection of
the results showed that most tails are successfully removed, but some invalid clusters
remain, specifically on the spinal cord (which were removed interactively). Although
increasing the value of ncluster might remove these false clusters of nodes, this will
also result in parts of the stent being removed (particularly for the Zenith stent graft,
for which the graph consists of several non-connected clusters).

In the brief discussion on the algorithm to calculate the curvature on the path
Pij , two parameter values were mentioned. These were not tested in the experiments
because it was found that the corners are placed in the correct location even when
the parameters were varied significantly.

8.4.2 Accuracy

Figure 8.10a show that the correspondence of the algorithm with the experienced
human annotators is 95% and 92% for the AneuRx and Zenith, respectively. This
is currently (to the best of our knowledge) the only published algorithm to segment
stent grafts is such a precise way. The fact that the accuracy is slightly lower for the
Zenith can be explained by the occasional sharp corners in its wire frame, which are
sometimes cut in the MCP method.

Figure 8.10b shows that the consensus between the different annotators is high.
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This means that the process of annotating provides consistent reference data and
suggests that the reference data is a good approximation of the real topology of the
stent. In the future the reference data can be used to perform similar experiments to
compare different algorithms that perform the same task.

From Figure 8.13 and Figure 8.14 it can be verified that the overall accuracy is
good, but some errors are clearly visible. Most errors are located at "difficult situa-
tions" such as the parts where the wire frame has relatively sharp corners (Zenith),
small mesh size (AneuRx), or bifurcations (AneuRx and Zenith). Further it can be
seen that for the AneuRx the frame contains holes, and that nearby structures are
sometimes attached to the stent (such as the coil in Figure 8.14f).

Figure 8.13 and Figure 8.14 show that there is still room for improvement. We
expect to gain the most by improving the graph processing, for example by more
explicitly incorporating information about the known topology of the stent. Never-
theless, we believe that the current results are good enough to enable studying the
motion of stent grafts in vivo. However, it should be noted that small errors in the
topology of the found model can lead to significant errors when calculating the forces
present in the stent. The extent to which the errors affect such calculations should
be investigated.

Currently the algorithm requires approximately 65 seconds for the AneuRx and
30 second for the Zenith on a Pentium 4 with 2.4 GHz (using a single thread). This
difference can be explained by the different number of edges between the stent types.

8.4.3 Limitations

In this study we focused on two different stent types—the AneuRx and Zenith—
which are made of nitinol (a nickel titanium alloy) and stainless steel, respectively.
We expect that the proposed algorithm can be used to segment other stent types as
well, provided that the contrast is high enough. This should be the case if such a
device is made of a similar material and has the same (or larger) wire diameter. In
initial tests (not shown in this work) we have seen positive results for the Talent stent
graft (Medtronic, Minneapolis, USA), while the Excluder stent graft (Gore, Flagstaff,
USA) seemed too ill-defined in the resulting CT data when scanned with our scanner
settings. More research is needed to determine the cause for these differences.

While the optimal parameter values are the same for both stent types under con-
sideration (except for the expected number of edges per node), this is not necessarily
true for other stent types.

The annotated reference data does not contains parts of the stent with bifurcations.
These are hard to annotate for three reasons: firstly, a bifurcation cannot be unfolded
in the way as proposed in this work. Secondly, the topology of the frame can be
relatively complex in these regions. Lastly, such regions can contain wires that touch
each-other, which are difficult to distinguish from wires that are physically attached.
Since the algorithm does not suffer from the first two limitations, we can expect the
algorithm to produce accurate results in these regions. This can, however, not be
verified with the presented experimental method.
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8.4.4 Implementation details
Most of the algorithm was implemented in the Python programming language2. A
time-critical part of the algorithm is the list L that stores the voxels of the “front”
in the MCP method (Algorithm 8.1). Because at each iteration the voxel with the
minimum D must be selected, usually some form of a binary heap is employed [30],
which enables obtaining the minimum value in O(log2(N)). For increased speed, the
detection of seed points, the binary heap, and a large part of the MCP method were
implemented in Cython [104], a dialect of the Python programming language that is
compiled to the C language.

The memory requirements of the algorithm depend mostly on the MCP method.
Considering a dataset of 512 × 512 × 512 voxels, the memory requirements can be
shown to be 2944 MB to store the volumetric maps required by the MCP method.
By cropping the data and selecting the region containing the stent, the data could
in our case be reduced to 256× 256× 256 voxels, implying a memory requirement of
just 368 MB. The latter requirement should not be a problem even for older (32 bit)
personal computers.

Accuracy and speed improvements may be achieved by applying a method that
detects the seed points in a more reliable way, while reducing the amount of seed points
found on bone. Further speed improvements may be realized by using a different
criterion to stop the evolution of the MCP algorithm, and by optimizing the graph
processing algorithms. Nevertheless, we believe that the algorithm in its current form
is fast enough to be used in the clinic.

8.5 Conclusions
We propose a method to segment stent grafts from CT data, consisting of three steps:
the detection of seed points, finding the connections between these points to produce
a graph, and graph processing to obtain the final geometric model. Using annotated
reference data, the method was optimized and its accuracy evaluated. It was found
that the algorithm performs good for both types of stent grafts under consideration
and is robust for noise and small variations in the used parameter values. Additionally,
the algorithm does not consume much memory for modern standards and is fast
enough to be used in a clinical setting.

The proposed algorithm produces an accurate geometric model of the stent in the
form of an undirected graph. This model allows incorporation of high level information
and material properties. We can now use this model to study the in vivo motions and
forces that act on the frame of the stent. We believe that such studies will provide
new insights in the behavior of the stent in vivo, enables the detection and prediction
of stent failure, and by better understanding the reasons for stent failure can play a
role in designing better stent grafts in the future.
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Part C
Registration

image registration: the process of transforming different sets of data into one
coordinate system. The goal of registration is to enable comparison or to find the
transformation between the different sets of data.
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9
A generic approach for groupwise
diffeomorphic image registration

A paper based on this chapter is in preparation.

Abstract
This chapter presents the technical details of the groupwise registration algorithm
that is used in Chapter 10 to estimate the motion of stent grafts. It is essential that
the transformations are diffeomorphic, such that the transformations have a unique
inverse and the motions can be reconstructed from the registration result. Transfor-
mations can be made diffeomorphic using a simple method based on B-spline grids.
However, this requires that the total deformation is represented as a composition of
many small deformations.

We propose a groupwise diffeomorphic registration method in which deformations
are represented using discrete displacements fields, and that uses B-spline grids as
a tool to regularize the delta deformations. The proposed generic method enables
the use of different types of forces to drive the registration. Using Demons forces we
obtain a groupwise diffeomorphic variant of the Demons algorithm. We also propose
a "gravity" force based on the attraction between edges in the images.

The proposed methods were quantitatively evaluated, and compared against the
classic Demons algorithm and an algorithm based on the optimization of mutual in-
formation. The results show that the proposed Demons algorithm has a high accuracy
if the intensities between the images are similar. The proposed gravity algorithm is
shown to be robust for distortions such as different lighting and bias fields.
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9.1 Introduction

Groupwise registration is the process of registering multiple images simultaneously—
in contrast to pairwise registration, in which just two images are aligned. The ap-
plication for this approach ranges from the creation of atlases (e.g. [7, 103, 56, 10]),
as well as the formation of active shape models [25] and calculating the motions in
dynamic data [89, 35].

In the latter two applications it is essential that the transformations are diffeomor-
phic, since such transformations have a unique inverse [35, 4]. Further, a diffeomorphic
deformation preserves topology, which is important in medical image registration to
ensures that the anatomy does not change in an unnatural manner. A transformation
that it is diffeomorphic (i.e. a diffeomorphism) is continuous, one-to-one (injective),
onto (surjective), and differentiable [20]. In the context of deformations, this means
that there are no folds or gaps.

When a deformation is described with a B-spline grid, continuity and differentia-
bility are implicitly guaranteed. Injectivity for B-spline grids can be guaranteed using
a simple method proposed by Choi et al.[19]. Since constraining a grid in this manner
allows just very small deformations, this approach is only applicable by maintaining
a total transformation and combining it with a delta deformations at each iteration.

9.1.1 Contribution

We propose a groupwise diffeomorphic registration method in which the total trans-
formation is composed of many small transformations. The total transformation for
each image is represented using discrete displacement fields, and a B-spline grid is
used as a tool to regularize the delta transformation at each iteration. Consequetly,
deformations can be constrained to be diffeomorphic in a simple way. Since the result-
ing transformations can easily be inverted and combined they are suitable for various
applications, such as atlas building and calculating changes or motions in time series.

Further, this generic approach allows the use of different types of “forces” to drive
the registration. We demonstrate this with Demon forces to create a variant of the
Demons algorithm that is groupwise and diffeomorphic. Additionally we propose a
new image derived gravity force, which is robust for changes in the image intensities,
and can also be used for multi modal image registration.

9.1.2 Overview

In order to explain the proposed method we shall first discuss the theory and state
of the art related to groupwise diffeomorphic image registration (section 9.2). Next,
we will explain the proposed generic registration method and two implementations
thereof (section 9.3). In section 9.4, we describe the experiments that we performed
in order to validate the proposed method, and in section 9.5 we discuss the results.

9.2 Theory

Let Ii(x) : Rd → R be an image of dimension d, with i ∈ [1 . . . n] and n the number of
images to register. Let Tij(x) : Rd → Rd be the transformation function that maps Ii
to match with Ij . We assume backward mapping transformations: Iij = Ii(Tij(x)).
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In a pairwise registration setting (n = 2), the goal is to find T12. In a groupwise
registration setting, the goal can be to find Ti for all i such that all images can be
transformed to a common reference frame. Alternatively, the goal can be to find Tij
for all i to transform all images to match with image Ij . For simplicity, we assume
that all images have the same size.

9.2.1 Representation

Without loss of generality, we assume that transformations are represented using a
displacement vector field, which describes the relative displacement for each location
x in the image. In practice, a discrete displacement field is often used: an image with
the same size as Ii, where each pixel represents the relative deformation at that pixel.
With Γ such an image we obtain for the corresponding T :

T (x) = x + Γ(x) (9.1)

Another common approach is to use a B-spline grid to describe the deformation
[101, 89]. It consists of a grid of knots that is overlaid on the image. To calculate the
deformation of a pixel, the contributions of the four nearest knots in each dimension
are combined:

Tij(x) = x +
∑

xk∈Πx

Bk(x− xk)φk (9.2)

where xk are the control points, B(x) the multidimensional B-spline basis functions
[113], φk the B-spline knot values, and Πx the set of all control points within the
compact support of x. The advantage of using a B-spline grid is that it describes a
continuous field in an efficient manner, and its inherent smoothness leads to realistic
deformations.

A transformation represented as a B-spline grid can easily be converted into a
discrete displacement field. The other way around, however, is more difficult. Lee et
al. [78] have proposed a solution that can be shown to minimize the sum of squared
differences. We rewrite Equation 5 from [78] to apply it to image data:

φk =

∑
x∈Πk

ω2
x · φx∑

x∈Πk
ω2
x

, (9.3)

where ωx = Bk(x − xk), the set Πk contains the pixel locations within the compact
support of k, and φx is the deformation to apply at x weighted by the B-spline basis
functions (see Equation 4 in [78]). This formula is applied in an iterative fashion
by going from a high/coarse scale to the finest required scale in steps of two [78].
Therefore this method is relatively computationally expensive. Further, it should be
noted that a B-spline grid can only model a subset of the deformations that can be
modeled with a discrete displacement field. For these reasons, if both representations
are used together, it is more straightforward to transform a B-spline grid into a
discrete displacement field than the other way around.

Although there is no technical reason to avoid using these two representations
together, there seems to be a tendency to use either a discrete displacement field or
a B-spline grid—not both.
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9.2.2 Two classes of algorithms
The current range of common region based image registration algorithms can be
divided into two classes. Both classes usually adopt a multiscale approach to prevent
convergence to local minima, and to speed up the registration process. In the first
class the total transformation consists of a combination of small transformations.
At each iteration a delta transformation is calculated, which is regularized and then
combined with the total transformation. The delta deformations are often calculated
using pixel-based image forces. The most notable method is the popular Demons
algorithm [109].

In the second class only a single total transformation is maintained, which is
updated at each iteration using an optimization procedure that minimizes/maximizes
a certain similarity metric. Often a B-spline grid is used to describe the deformation
field (e.g. [101, 118]), which has the advantage that the deformations are described
with few parameters and are physically realistic [93].

Regularization in the second class of registration algorithms is by definition applied
to the total transformation. Although this allows for a high degree of control by for
example penalizing small Jacobians [22, 116], some deformations (e.g. rotations) are
difficult to describe using a B-spline grid [72]. In algorithms belonging to the first
class usually only the delta deformations are regularized, which causes a fluid-like
effect and enables modeling a larger set of transformations. However, this can also
lead to unrealistic transformations if no special care is taken.

9.2.3 Combining deformations
In literature deformations are sometimes reported to be combined by addition (e.g.
[109]). Even though this can produce satisfactory results in an iterative setting, this
operation is an approximation. Furthermore, adding two diffeomorphic transforma-
tions does not guarantee that the result is diffeomorphic too.

A better approach is to combine deformations using composition, which is an
operation with the property that if both deformations are diffeomorphic, the result is
also diffeomorphic [77, 4]. Given a deformation T1 and a delta deformation T2 that
should be combined with it, we obtain the total deform T3. With ◦ the mathematical
composition operator:

T3 = T1(T2) = T1 ◦ T2 (9.4)

Unfortunately, the composition of two transformations can not be described using
a B-spline grid, even if both transformations are B-spline grids [116]. Therefore, either
a cascade of transformations is employed [102], which significantly reduces the speed
of the algorithm, or one must use a discrete displacement field to describe the total
deformation.

9.2.4 Diffeomorphic transformations
A transformation that it is diffeomorphic (i.e. a diffeomorphism) is continuous, one-
to-one (injective), onto (surjective), and differentiable [20]. If a transformation is
continuous, injectivity and surjectivity are analogous (Figure 9.1).

In the context of image deformations, we can distinguish two types of injectivity.
We call a transformation normally injective if the domains of Ii and Ij are considered
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Ii

Ij

(a) Injective: every pixel in Ii maps
to a unique point in Ij .

Ii

Ij

(b) Surjective: every pixel in Ij is
accounted for.

Figure 9.1: Illustration of an injective map (a) and a surjective map (b). It can be
seen that if an injective mapping is also continuous, it is also surjective.

(a) Not injective (b) Normally injective (c) Fully injective

Figure 9.2: Illustration of an image with an imposed deformation. The result is shown
for different injectivity constraints.

to expand beyond the boundaries of the images. In this case, some pixels may be
mapped outside the image boundaries, and some pixels from outside the boundaries
may be mapped inside the image (Figure 9.2b). This can be a problem in case
multiple deformations are combined or when the inverse deformation is calculated,
because then the result may not be diffeomorphic.

We call a transformation fully injective if the domains of Ii and Ij are bounded
by the borders of the image. With such a mapping all pixels remain inside the image
and no pixels from outside the image are introduced (Figure 9.2c).

9.2.4.1 Penalizing small Jacobians

One approach to constrain a transformation to be diffeomorphic is to prevent folding
by ensuring that the Jacobians of the total deformation do not go below zero [102,
22, 116]. This approach has the advantage that it is relatively easy to include in
algorithms that optimize a similarity metric. However, it has been shown that the
constraint imposed on the transformation is sometimes so large that it can have a
significant negative effect on the registration result [102].

9.2.4.2 Diffeomorphic constraints based on continuum mechanics

Inspired by the transport equations from continuum mechanics, early approaches
for diffeomorphic image registration use a dynamic vector field to model one image
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as it flows to match the shape of another image (e.g. [22, 20, 9, 56]). Since this
approach is very time and memory consuming and therefore not suitable for large
volumetric datasets [35], algorithms based on a stationary vector field have gained
popularity. While this approach has fewer degrees of freedom and can only model
a subgroup of diffeomorphisms, the versatility of this stationary approach has been
shown to be sufficient in several applications [35, 116, 4]. Most of these algorithms
use a variant of the Log-Euclidean framework originally proposed by Arsigny et al.
[3], which also enables calculating statistics on diffeomorphisms. A disadvantage is
that the logarithm may become ill-defined in the presence of large deformations [3].
This approach has been combined with the popular Demons algorithm [109] to obtain
a version of the algorithm that is diffeomorphic [116].

9.2.4.3 Diffeomorphic constraint using a B-spline grid

When a deformation is described with a B-spline grid, continuity and differentiability
are implicitly guaranteed. Injectivity for B-spline grids can be guaranteed using a
simple method proposed by Choi et al.[19]. They propose and proof simple conditions
for the knot values of the B-spline grid: if the values of all knots in the grid are less
then the critical value φd/K the grid is guaranteed to be injective. In this expression
φd is the distance between the knots and the value of K is 2.04639 and 2.47947 for
2D and 3D, respectively.

One advantage of this method is that it enables averaging multiple deformations to
obtain a mean deformation that is also diffeomorphic. While this might seem obvious,
this is not possible for diffeomorphisms in general [3]. To show that averaging indeed
yields a diffeomorphism, consider averaging a set of transformations that are described
using B-spline grids subject to Choi’s constraint. Clearly, the values of the knots in
the resulting average grid will also be below the critical value.

Since constraining the grid in this manner allows just very small deformations,
this approach is only applicable to the class of algorithms that update the total trans-
formation by composing it with many delta deformations. Because the composition
of two deformations cannot be described using a B-spline grid, the final deformation
should be described using a cascade of transformations or using a discrete displace-
ment field.

We believe that this is the main reason why this relatively simple method is
currently not widely applied, particularly in algorithms that describe the deformation
using a B-spline grid and minimize a certain cost function [101, 67].

9.2.4.4 Constraining a transformation to be fully injective

A transformation can be constrained to be fully injective if everywhere in the image
the deformation is not larger than the distance to the nearest edge, i.e. if no point
on the inside of the image is transformed outside of the image and vice versa. This
constraint can be attained by—in addition to the normal diffeomorphic constraint—
constraining the B-spline grid in such a way that the transformation is zero at the
edges.

Without loss of generality, assume a 1D B-spline grid that has exactly two knots
beyond the edge of the image, such that the edge of the image is between knots φ2

and φ3. The value can be made to go to zero at the edges in a smooth way by setting
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Figure 9.3: Illustration of a B-spline grid that is modified such that the field that it
describes is zero at the edges. Shown are the modified knots of a 1D B-spine grid
(that were initially all 1). The field smoothly goes to zero at the edges in about two
knot-spacings.

the first three knot values (Figure 9.3):

φ3 ← (1− t) · φ3 (9.5)
φ2 ← −(φ3 ·B3(t) + φ4 ·B4(t))/B2(t) (9.6)
φ1 ← 0 (9.7)

where B1 through B4 are the B-spline basis functions [113], and t is a factor between
0 and 1, corresponding to the image edge being between φ2 and φ3, respectively. The
value of φ3 in the second line is the new value as determined by the first line. If the
grid is aligned with the image (t = 0) the equations reduce to φ1 ← 0 and φ2 = − 1

4φ3.

9.2.5 Groupwise registration
One groupwise registration approach is to apply pairwise matching repeatedly; each
image is transformed to all the other images, and the final transformation is the av-
erage of these transformations. By doing this for all images, they are all mapped to
a reference frame which represents the mean shape of the population [103]. Another
approach is to deform all images simultaneously while constraining the mean trans-
formation to be the identity transform. This has been demonstrated using Mutual
Information as a similarity metric [11], and using a metric based on the sum of en-
tropies along pixel stacks [7]. In a recent approach the deformation is described using
a 4D B-spline grid (or 3D for 2D data), such that the deformation between the images
is constrained to be smooth [89]. Groupwise registration has also been performed in
a diffeomorphic framework by [25] and [21].

Under certain conditions, groupwise registration is symmetric: Tij and Tji are
calculated simultaneously, while ensuring that they are each-other’s inverse [20]. Even
if the inverse transformation is not of interest, the constraint itself will be beneficial
for the registration result (except in cases that uniquely determine the correspondence
between the images, i.e. landmark based registration) [20].

9.3 Methods
Based on the theory described in the previous section, we propose a groupwise dif-
feomorphic image registration algorithm that belongs to the class of algorithms that
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uses delta transformations to update the total transformation at each iteration.

9.3.1 Generic registration method

The algorithm guarantees fully diffeomorphic transforms by applying Choi’s con-
straint [19] to the delta transformations, and by applying the method discussed in
section 9.2.4.4. Composition is used to combine the delta deformations with the total
deformation. Consequently, the total deformation is described using a discrete dis-
placement field. The registration is performed iteratively while the scale s is reduced
from coarse to fine. At each iteration, Isi is the deformed image Ii at scale s.

9.3.1.1 Groupwise approach

Groupwise registration is obtained by simultaneously registering the images towards
a virtual reference frame. A total transformation Ti is maintained for each of the
images being registered. The delta deformation ∆Ti is calculated by taking the mean
of the delta deformation between the images:

∆Ti =
1

n

n∑
j=1

∆Tij , (9.8)

This method is similar to [103], but the proposed method applies the averaging of the
transformations at each iteration rather than at the end.

9.3.1.2 Delta deformations

The delta transform ∆Tij is calculated from the deformation force Fij , which is de-
rived from the images Isi and Isj , and can be obtained in any way. Such a wide variety
of forces is possible because of the regularization method that is applied to Fij .

To convert Fij to ∆Tij the transformation is made diffeomorphic. To convert Fij
to ∆Tij it is first converted to a B-spline grid (if necessary) using Equation 9.3, with a
grid spacing that is proportional to the scale s. A multiscale approach is not required
in this case, since the forces already match with the scale. Next, the knot values
are limited according to Choi’s constraint [19]. Instead of clipping the values at the
required limit, we limit the values in a smooth way:

φk ←
{

β · (1− e−φk/β) where φk > 0
−β · (1− eφk/β) otherwise

(9.9)

This function has a slope of 1 at the origin and has an asymptote at +β and −β. The
value of β according to Choi’s constraint is β = φd

K , with φd the distance between the
knots of the B-spline grid. We propose to tighten this constraint even further to limit
the maximum deformation at each iteration to a value relative to the scale, thereby
preventing abnormally large deformations and improving convergence: β = s

K . Next,
the grid is constrained to be fully injective (section 9.2.4.4).

9.3.1.3 Scale space approach

In most publications on image registration, the scale s is reduced with factors of two.
In contrast, we consider the scale as a continuous parameter. Therefore, we chose to
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smoothly decrease the scale and define a fixed number of iterations piters for each
factor-of-two reduction. This has the effect that the average deformation found at
each iteration scales smoothly with scale, which might increase the probability of
finding the global optimum registration. The parameter piters represents the scale
sampling, and is comparable to the "number of iterations per scale" parameter of
other registration algorithms.

The algorithm moves down in scale space until the final scale is reached, at which
point the registration process stops. There is no need for a stop criterion. Instead,
the assumption is made that the algorithm converges fast enough to “keep up". If
this is not the case the value of piters should be increased.

9.3.1.4 Obtaining the final transformation

After the registration is finished, there is for each image Ii a transformation Ti that
maps the image to the reference frame (Figure 9.4a). It is now possible to obtain any
transformation Tij by using the following equation (Figure 9.4b):

Tij = C(Ti, T
−1
j ). (9.10)

It can be shown that Tij and Tji are each other inverse. With (f◦g)−1 = (g−1◦f−1)
it follows that:

T−1
ij = C(Ti, T

−1
j )−1 = C(Tj , T

−1
i ) = Tji (9.11)

For some applications, such as atlas building, the transformation to the mean
shape is of interest: T̂i = 1

n

∑n
j=1 Tij . Provided that the delta transformations are

symmetric (∆Tij = −∆Tji) the reference frame is also the mean shape: Ti = T̂i.

9.3.1.5 Obtaining transformations in between images

Any transformation to another image can be obtained by composing a transformation
that maps to the reference frame with one that maps back to the "image space". In
some situations (e.g. motion analysis) it may be of interest to map the images to a
virtual image in between two images, i.e. to find Tij where j is not integer. This
is possible by using a transformation from reference frame to image space that is
a linear combination of transformations (Figure 9.4b). This makes it possible to
interpolate between different time frames in a motion sequence, using linear or even
cubic interpolation.

It should be noted that in this case the linear combination of transformations is
not mathematically guaranteed to be diffeomorphic [3]. However, due to the relation
between the transformations that are combined, it is unlikely that such a transforma-
tion becomes non-diffeomorphic.

9.3.2 Diffeomorphic Demons registration
An image-based force that is known to provide good results if the images have similar
intensities is the Demons algorithm [109]. By calculating Fij using the Demon forces,
we obtain a variant of the Demons algorithm that is diffeomorphic. We use the
improved force equation for which the force is derived from both images, which is
symmetric (Fij = −Fji) and more robust [117]. The force is calculated as follows:
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T1

T2

T3

(a)

T1

T2

T3

T4

T4,1
T3,1.5

(b)

Figure 9.4: Illustration of the deformations that are obtained with the registration
algorithm. The outer circle represents the space of original images. The small inner
circle represents the reference frame. In (a) an example is shown for four images,
using forward mapping. In (b) it is illustrated how one can obtain transformations
from one image to another image, and even in between images: T41 = C(T4, T

−1
1 ) and

T3,1.5 = C(T3, 0.5·(T1+T2)−1). Note that linearly combining multiple transformations
is only valid for forward mapping transformations.

Fij =

(
∇Isi

|∇Isi |2 + pnoise · (Isi − Isj )2
+ (9.12)

∇Isj
|∇Isj |2 + pnoise · (Isi − Isj )2

)
· (Isi − Isj ) · pspeed,

where Isi is the deformed image Ii at scale s, and pnoise is a parameter that is a
measure for the amount of noise in the image. We also introduce the parameter
pspeed to influence the relative strength of the deformation. Instead of regularizing
using Gaussian diffusion, the B-spline based regularization as described in the previous
subsection is used.

9.3.3 Gravity Registration

In addition to the diffeomorphic Demons algorithm we also propose a registration
algorithm based on attracting forces between objects in the images. A preliminary
version of this algorithm was proposed in [61]. The first step of the algorithm is to
obtain the mass-images Ms

i and Ms
j . These mass images should be created in such a

way that they both contain a sparsely distributed set of structures (a group of high
intensity pixels/voxels). The main idea of the Gravity algorithm is that the structures
in both mass images attracts each-other; the larger a structure’s weight (i.e. higher
intensities), the larger the attractive force.

9.3.3.1 Creating the mass images

Because images can be considered similar if the intensity changes occur at the same
location, we propose to use the gradient magnitude to detect intensity changes in
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both images1 (The index i is omitted in the next equations for simplicity.):

Ms = |∇Is|. (9.13)

Further, a series of operations is applied to normalize the mass image. First, the
image is normalized such that its mean is zero and its standard deviation is 2. We
now assume that the values below zero belong to the background noise, and that the
important masses are between 0 and 1. To prevent pixels with high values in the
mass image to result in extreme deformations, these pixels are tempered. All values
below zero are made zero, and the values are smoothly limited to 1 using the same
approach as proposed in Equation 9.9:

Ms ←
{

0 where Ms(x) < 0
1− e−Ms

otherwise (9.14)

Finally, linear diffusion is applied to smooth the mass image and increase the
region of attraction: Ms ←Ms ⊗ gs, where gs is a Gaussian kernel corresponding to
scale s.

9.3.3.2 Calculating and regularizing the deformation

The total force is calculated by combining the obtained forces of the two images.
First, the "gravity field" is obtained by calculating the gradient of the mass:

Fij = (∇Ms
j −∇Ms

i ) · s · pspeed (9.15)

where pspeed is a parameter of the proposed algorithm that can be used to influence
the relative strength of the deformation at each iteration. The vector field Fij de-
scribes the deformation for each pixel. However, since in our situation the intensities
(i.e. masses) are sparsely distributed over the image, normal regularization will lead
to unsatisfactory results; pixels which have a high mass should contribute more than
pixels which have a small or zero mass. In order to solve this problem, we modify
Equation 9.3 by introducing a weight for each pixel:

φk =

∑
x∈Πk

αx · ω2
x · φx∑

x∈Πk
αx · ω2

x

. (9.16)

The introduced weight factor is set to αx = Ms
i (x) ·Ms

j (x). The underlying idea
to this approach is that the deformation is calculated by evaluating the gravity field
created by both images at the location of the mass. In addition to enabling the
deformation to be described by a sparse set of pixels, the introduced weight factor
also has a noise regulating effect when used in combination with the normalization
step in the calculation of the mass images.

1Depending on the type of images, other operators such as the absolute of the Laplacian may be
used as well.
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9.4 Experiments and results

A series of experiments have been performed to demonstrate and evaluate the pro-
posed algorithm. The first is a qualitative experiment to demonstrate the applicability
of the proposed algorithm to a groupwise registration problem, and to show how the
resulting transformations can be used further.

The next four experiments were performed to quantitatively evaluate the accuracy
and robustness of the proposed algorithms. They were compared with an implementa-
tion of the Demons algorithm as proposed in [117], and with a registration algorithm
that optimizes Mutual Information (MI). For the latter we have used the implemen-
tation that is freely available in the Elastix toolkit[67]2. Each of the experiments
was performed on different kind of data, and in each experiment a distortion was
introduced to evaluate the robustness of the algorithms. For brevity, we denote the
proposed algorithms “DD" for diffeomorphic Demons, “Grav" for Gravity, “CD" for
classic Demons, and “MI" for Mutual Information.

9.4.1 Random transformations

In some of the following experiments, random transformations were used. These
deformations were calculated by randomly sampling 50 points inside the image. From
each point, a random vector was generated with a maximum norm of 20 pixels. This
description was then converted to a fully diffeomorphic displacement field using a
method similar to [77]. By setting the seed for the random number generator before
each experiment, the deformations could be repeated, such that the deformation were
the same for each algorithm.

9.4.2 Experiments on four images containing a square

In order to demonstrate the groupwise property of the proposed registration algo-
rithm, the Gravity algorithm was applied to four images (100 × 100 pixels) each
containing a 10 pixels wide square, which was for each image located in a different
corner. Gaussian distributed noise was added to all images (Figure 9.5). The images
were registered towards each other, resulting in transformations that each map the
square to the center of the image. These transformation fields were the basis for
further processing.

First, the transformation fields were calculated to map each image to the shape
of image I1.3 For each image i, Ti1 = C(Ti, T

−1
1 ). All images were mapped to this

shape and then averaged. The result in Figure 9.6 shows that the noise is reduced
and the square still has sharp edges. It can also be seen that the deformation fields
are fully diffeomorphic.

Next, the same method was repeatedly applied, but all images were mapped to
a shape in between the original images as explained in section 9.3.1.5. In this way,
a series of images was obtained that show the square moving from one corner to the
other. This was done using linear and cubic interpolation of the transformations.
To illustrate this in a single image, the original squares are shown together with the

2http://elastix.isi.uu.nl/
3In practice it would likely be more convenient to transform all images to the mean reference

frame. For the sake of the example we chose to map all images to match with the first image.
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Figure 9.5: Illustration of the four images used to demonstrate the groupwise regis-
tration. Each image contains a 10× 10 pixel square and additive Gaussian noise with
a standard deviation of 10%. The distance between the squares is 10 pixels.

Figure 9.6: Illustration of the deformation fields to transform the images to the shape
of the top left image. The top left itself shows the average of all four images. It can
be seen how the noise is reduced, while the square has sharp edges.

squares exactly in between (Figure 9.7). It can be seen how the "deformation path"
can be made smooth by using cubic interpolation.

9.4.3 Experiments with the Lena image

Experiments were performed on two-dimensional images (256× 256 pixels) based on
the well-known Lena image (e.g. Figure 9.2).

Random but known deformations were applied to the images and the algorithms
were applied to reconstruct this deformation. The image and its deformed counterpart
were distorted with 10% Gaussian distributed noise (i.e. the sigma was 10% of the
maximum value of the image). A series of 10 image-pairs were used as a training set,
and a series of 30 image-pairs was used as a test set.

All algorithms were first tuned using the training set to find the optimal param-
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(a) Linear (b) Cubic

Figure 9.7: Illustration of the creation of new images (green) in between the original
images (red), by linear and cubic interpolation of the transformations. The black line
shows the approximate location of the square’s center for 40 locations.

(a) 10% noise (b) 20% noise

Figure 9.8: Illustration of the mean deformation error for registering the Lena image.
The dotted horizontal line represents the error when the images are not registered.

eters. The resulting values are shown in Table 9.1. Next, the experiments were
performed on the test set. To test the algorithms robustness for noise, the experi-
ments were repeated with 20% Gaussian noise. The results of the experiments are
shown in Figure 9.8. Registering a single image took on average 5.3 s and 3.6 s for
the diffeomorphic Demons and Gravity algorithms, and 1.7 s and 21 s for the classic
Demons and MI-based algorithms.

To evaluate the effect of the differences between the proposed and the classic
Demons algorithm, the experiments were repeated (with 10% noise) for four variants
of the Demons algorithm: the proposed algorithm (DDemons), the classic algorithm
(CDemons), a variant of the proposed algorithm that uses a classic (non-smooth)
scale sampling approach (DDns), and a variant of the classic algorithm that uses the
proposed smooth scale sampling approach (CDs). The results are shown in Figure 9.9.
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#iters per Grid sampling Speed Noise
scale level (smoothing) factor factor
piters pgs pspeed pnoise

Lena image
DD 16 15 1.5 (1.0)
Grav 16 15 2.0 -
CD 16 4.0 - 1.25
MI 250 15 - -

Toys image
DD 16 40 5.0 (1.0)
Grav 16 40 2.0 -
CD 16 5.0 - 1.5
MI 250 40 - -

T1-T1
DD 16 15 0.5 (1.0)
Grav 16 15 2.0 -
CD 16 5.0 - 2.5
MI 250 15 - -

T1-T2
DD 16 30 0.5 (1.0)
Grav 16 30 2.0 -
CD 16 5.0 - 2.5
MI 250 30 - -

Table 9.1: List of the parameters used in the experiments to register the different
images. For CD (classic Demons) pgs is the sigma if the smoothing kernel.

Figure 9.9: Illustration of the mean deformation error (on the Lena image) for differ-
ent variants of the Demons algorithm. DDns represents the proposed diffeomorphic
Demons algorithm but not with a smooth scale space. CDs represents the classic
Demons algorithm with a smooth scale space.
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(a) With flash (b) Without flash

Figure 9.10: Illustration of the two photos of a scene taken under different lighting
conditions.

9.4.4 Experiments with images of a scene under different light-
ing conditions

Experiments were performed on photos of a scene under different lighting conditions.
The images (400× 300 pixels) contain a table on top of which are placed a few toys,
and there is a couch in the background. This scene was shot using a regular consumer
camera (Canon Powershot) with and without the use of a flash (Figure 9.10).

First, only the image with flash was used. Random but known deformations were
applied to this image and the algorithms were applied to reconstruct this deformation.
The image and its deformed counterpart were distorted with 10% Gaussian distributed
noise. A series of 10 image-pairs were used as a training set, and a series of 30 image-
pairs was used as a test set.

All algorithms were first tuned using the training set to find the optimal parameters
(Table 9.1). Next, the experiments were performed on the test set. To test the
algorithms robustness for lighting conditions, the experiments were repeated, but in
this case the image with flash was registered to the deformed image without flash.
The results of the experiments are shown in Figure 9.11. Registering a single image
took on average 5.3 s and 5.7 s for the proposed Demons and Gravity algorithms, and
2.8 s and 22 s for the classic Demons and MI-based algorithms.

9.4.5 Experiment with single modal MRI data

Experiments were performed on two-dimensional slices extracted from simulated MRI
images (181×217×181 voxels, spaced 1 mm in all dimensions, with a slice thickness of
1 mm). These images were obtained from the Brainweb database[73]4. We obtained
T1 weighted images with 3% noise (as defined by Brainweb), and an intensity non-
uniformity of 0%. For practical reasons, the slices were padded to 256 × 256 pixels
(Figure 9.13a).

Random but known deformations were applied to the images and the algorithms
were applied to reconstruct this deformation. A series of 14 slices was used as a
training set, and a series of 28 slices (not overlapping with the training set) was used
as a test set.

4http://www.bic.mni.mcgill.ca/brainweb/
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(a) Same lighting (b) Different lighting

Figure 9.11: Illustration of the mean deformation error for registering images of a
scene containing toys. The dotted horizontal line represents the error when the images
are not registered.

(a) 0% bias field (b) 40% bias field

Figure 9.12: Illustration of the mean deformation error for registering T1 to T1
images. The dotted horizontal line represents the error when the images are not
registered.

All algorithms were first tuned using the training set to find the optimal parameters
(Table 9.1). Next, the experiments were performed on the test set. To test the
algorithms robustness for the bias field, the experiments were repeated, but in this
case using a bias field of 40% for the deformed image. The results of the experiments
are shown in Figure 9.12. Registering a single image took on average 4.4 s and 3 s
for the proposed Demons and Gravity algorithms, and 1.2 s and 20 s for the classical
Demons and MI-based algorithms.

9.4.6 Experiment with multi modal MRI data

Experiments were performed on multi modal simulated MRI data. The same data
was used as in the previous experiment, but now the task of the algorithms was to
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(a) T1 (b) T2

Figure 9.13: Illustration of the a T1 image and the corresponding (but deformed) T2
image.

(a) 0% bias field (b) 40% bias field

Figure 9.14: Illustration of the mean deformation error for registering T1 to T2
images. The dotted horizontal line represents the error when the images are not
registered.

register a T1 image to a deformed T2 image (Figure 9.13).
All algorithms were first tuned using the training set to find the optimal pa-

rameters. The resulting values are shown in Table 9.1. Next the experiments were
performed using a bias field of 0% for the T1 and T2 images. Again, the experi-
ments were repeated using a bias field of 0% and 40%, respectively. The results of
the experiments are shown in Figure 9.14.

9.5 Discussion

9.5.1 Experiments

Using a set of simulated images containing a white square, we demonstrated the capa-
bility of the proposed algorithm to perform groupwise registration. We also showed
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how the resulting transformations can be used to map all images to the reference
frame, and how a motion sequence can be temporally interpolated.

The results for registering the Lena images (Figure 9.8) show that the proposed
variant of the Demons algorithm has the best performance. MI and Gravity registra-
tion perform slightly worse, and classic Demons performs the worst. As the noise is
increased, this trend is maintained.

The comparison of different variants of the Demons algorithm (on the Lena image)
shows that using smooth scale sampling produces slightly better results compared to
using factor-of-two scale sampling. This is shown for both the proposed (p < 0.0002)
and the classic (p < 0.09) Demons algorithm.

The results for the experiments with images containing toys (Figure 9.11) show
that the proposed algorithms perform comparably well, but that classic Demons and
MI seems less capable of accurately aligning this type of images. When the lighting
conditions for the two images to register are different, all algorithms suffer greatly,
except Gravity registration, which only has a slightly increased deformation error.

The results for the single modal MRI data clearly show that the diffeomorphic
Demons and MI algorithms perform the best. Although the Gravity algorithm per-
forms considerably worse, its average error is still smaller than the pixel size. When
a bias field is introduced, it can be seen that both Demons-based algorithms per-
form much worse. This is because Demon forces rely on the similarity between pixel
intensities.

The results for the multi modal MRI data show that the accuracy of both Demons
algorithms is lower than the other two algorithms. This is as expected, because the
intensities differ greatly between the images. Although Gravity registration has an
error slightly larger around 3 pixels (which can be considered sufficient for many ap-
plications), it is clearly outperformed by the MI-based algorithm. Since the pixel
intensities between the images are already different, no significant changes are ob-
served when a bias field is introduced.

Although the experiments were all performed on 2D data, the proposed algorithms
can be applied to 3D data as well.

9.5.2 Algorithms

9.5.2.1 Demons

For the proposed Demons algorithm, the parameter pnoise was always optimal when
set to 1.0, which effectively disables this parameter. This is probably because it is not
necessary in combination with the B-spline based regularization; the strength of the
delta deformations is regulated by the proposed constraint that keeps the B-spline
knot values smaller than s

K .
Although we have shown that the usage of smooth scale sampling improves the

performance of the Demons algorithm, the major part of the performance improve-
ment of the diffeomorphic Demons algorithm can be attributed to the proposed reg-
ularization method based on B-splines. Since both images have to be deformed at
each iteration, and because the proposed regularization is more costly than simple
Gaussian diffusion, the proposed method is roughly a factor 3 slower than the classic
Demons algorithm. This decrease in speed is justified given the large performance
increase compared to the classic Demons algorithm.
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The experiments show that the diffeomorphic Demons algorithm produces excel-
lent results when the image intensities between the images are similar. Unfortunately,
the Demons algorithm is inherently sensitive to distortions such as lighting conditions
and bias fields.

9.5.2.2 Gravity

Since Gravity registration is based on attraction forces, it is decoupled from the
absolute image intensities, which enables (and requires) normalization of the mass
image. Therefore the algorithm is robust for differences in image intensities such as
bias fields and image artifacts, and operates well on a wide range of images with little
need to change the parameter values (as can be seen from Table 9.1). Its performance
in situations with extreme differences in the appearance between the images was
already demonstrated in [61]. This also enables using Gravity registration on multi
modal images. Unfortunately, in some situations this feature makes the algorithm
less accurate than for example the proposed Demons algorithm, which uses the image
intensities more directly to calculate the force Fij .

The experiments show that although Gravity registration is often not the most
accurate registration algorithm, it has a good overall performance and is robust for
different image artifacts, causing it to outperform the other registration algorithms
in extreme situations.

9.5.2.3 Mutual Information

In most experiments involving the MI-based algorithm, the performance of this algo-
rithm could be improved by increasing the number of iterations. However, this would
make the processing time even longer. In the presented experiments the proposed
algorithms are more than five times as fast as the MI-based algorithm, even though
they run in a single thread. The number of iterations could probably be reduced for
the MI-based algorithm to trade performance for speed.

Except for the experiments with the images containing toys, MI performs very
well compared to the other algorithms, and clearly performs best on the multi-modal
image data. Unfortunately, the used MI registration algorithm is not diffeomorphic
nor groupwise. It would therefore be interesting for future studies to incorporate a
force in the proposed algorithm that is based on Mutual Information.

9.6 Conclusions

We propose a registration algorithm that can be applied to two or more images,
and which produces transformations that are symmetric and diffeomorphic. This
is achieved by representing the transformation as a discrete displacement field and
using a B-spline grid to constrain the delta transformations at each iteration to be
diffeomorphic.

The algorithm has a generic design; different forces can be used to drive the
registration process. In the current work we propose two forces. The first are Demons
forces, resulting in a variant of the Demons algorithm that is diffeomorphic and can be
used in a groupwise setting. The second are gravity forces, resulting in an algorithm
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that is robust for differences in the intensities between the images, making it suitable
also for multi modal registration problems.

In quantitative experiments we evaluated both proposed methods against the clas-
sic Demons algorithm and an algorithm based on the optimization of mutual infor-
mation. The results show that the proposed diffeomorphic Demons algorithm has a
high accuracy if the pixel values between the images are similar. When distortions
are introduced that affect the relation of the pixel values between the images (such as
different lighting or bias fields) the performance of both Demons algorithms decreases.
The proposed Gravity algorithm is shown to be robust for such distortions.

9.7 Outlook
A major problem with image registration is that the selection of the best registration
algorithm (and what parameters should be used) depends greatly on the problem
and the type of images. We believe that the proposed generic registration algorithm
can be valuable for handling this problem. Firstly, it’s regularization method leads
to good convergence (as is demonstrated by how much the proposed Demons algo-
rithm has improved compared to classic Demons). Secondly, it allows using a large
variety of forces to drive the registration. The force could, for example, be tailored
to fit a particular problem, without the need to implement a whole new registration
algorithm.
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A tool for studying the motion of stent

grafts in AAA

A paper based on this chapter is in preparation.

Abstract
In this chapter we propose a method to quantitatively measure the stent graft motion
in a robust manner. Groupwise image registration is used to find the deformations
between the multiple three-dimensional images (Chapter 9). These deformations are
then used to incorporate motion to the geometric model of the stent that is obtained
by our segmentation algorithm (Chapter 8). The result is a quantitative dynamic
model of the stent. Since the geometric model describes the topology of the stent,
the forces acting on the stent can be estimated as well.

We performed experiments to compare four different registration algorithms on
data containing stent grafts. Further, we calculated the motions in data acquired from
13 clinical cases. The motions show mainly distal motions and expanding motions in
the transversal plane. Further, we show that depending on the geometry of the stent,
similar motion patterns can result in different force distributions.

These results give a glimpse of the possibilities that this new source of information
can provide. The proposed method should therefore be seen as a tool that enables
further research to the behavior of stent grafts in vivo.
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10.1 Introduction

10.1.1 Clinical context

Endovascular aneurysm repair (EVAR) is an established technique, which uses stent
grafts to treat aortic aneurysms in patients at risk of aneurysm rupture [125]. How-
ever, due the need for reintervention it does not have a significant advantage over open
repair on the long term [53, 27]. Late stent graft failure is therefore a serious complica-
tion in endovascular repair of aortic aneurysms [16, 28, 54, 80, 88, 100]. Examples are
metal fatigue, stent graft migration [80, 70], and the formation of endoleaks [82, 106].

The long-term durability of stent grafts is affected by the stresses and hemody-
namic forces applied to them, which may be reflected by the movements of the stent
graft itself during the cardiac cycle. Studying the dynamic behavior of stent grafts
can therefore give a better understanding of their motion characteristics, and can give
insights into how these motion characteristics relate to certain stent-related problems.
This information will be beneficial for designing future devices and can be valuable
in predicting stent graft failure in individual patients [74].

Applying ECG-gated CTA [45] provides three-dimensional datasets at different
phases of the cardiac cycle. This allows 4D visualization of the scanned object and
enables the investigation of its temporal behavior. ECG-gated CT has been used
to study the motions of aneurysms [49, 91, 119] and stent grafts [74, 108]. In [62]
we demonstrated that ECG gating is a suitable technique for studying the expected
motions in the stent graft and vessel wall in abdominal aortic aneurysm (AAA).

10.1.2 Previous work

Most studies on the motion of stent grafts focus on measuring the stent’s diameter
changes [51] or finding the motion for a sparse set of points on the stent [74]. A
model that enables capturing material properties and high level knowledge about
the stent graft would be a valuable tool to gain more insight into the stent’s in vivo
behavior [74]. Such a model can also help in performing more reliable (fluid dynamics)
simulations, which is important for improving current stent designs [17, 68].

In [66] we proposed a method to segment the wire frame of the stent. This algo-
rithm can operate on low-dose (i.e. high noise) data, which is important because this
reduces the exposure of the patient to ionizing radiation, thereby increasing patient
safety on the long term [98, 39]. The algorithm produces a geometric model of the
stent, consisting of a graph, where the nodes represent the corners and crossings of
the stents frame and the edges represent the actual wires (Figure 10.1). For each
edge, the path through the voxels is known as well, allowing for a more precise repre-
sentation of the stent. This particular graph representation is also known as a spatial
graph [6].

One method to apply motion to the obtained geometric model would be to segment
the model in each of the different phases. However, this could lead to inconsistencies
between the models, which is difficult to deal with. Furthermore, the accuracy of the
measured motions would then depend greatly on the accuracy with which the nodes
are localized in the individual volumes. This is particularly problematic for motions
in AAA, since the data is noisy and the motions of interest are small [62].

A better method is to find the deformation fields between the different phases in
an accurate manner, and use these to apply motion to the geometric model. The
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(a) (b) (c)

Figure 10.1: Example graphs that describe a geometric model of the stent’s frame.
The edges between the nodes represent the physical wire frame of the stent. Nodes
are placed at corners (a) and crossings (b), which makes it possible to model different
stent types. The (change of) angle φ when motion is applied to the model can be
used to estimate the force present in the node (c).

geometric model can then also be calculated from the averaged phases, which results
in a more accurate segmentation[66]. These deformation fields can be found through
image registration techniques. Because all the phases must be registered simultane-
ously, a groupwise registration approach is required. This demands specific features,
such as the guarantee for a unique inverse [35, 4](Chapter 9). In previous work we
have proposed a generic groupwise diffeomorphic image registration algorithm, which
allows using different forces to drive the registration process (Chapter 9).

10.1.3 Contribution

In this work we propose a method to study the motions of stent grafts in AAA, which
consists of two parts: segmentation and registration. First, segmentation is used to
obtain a geometric model of the stent. Next, groupwise image registration is used to
obtain the deformation fields which are used to apply motion to the geometric model.
The initial concepts of this idea were briefly discussed in [64].

We compare different image registration algorithms to determine which one is the
most suitable for our purpose. Additionally, we show the resulting motions of stent
grafts obtained from the data of 13 different patients.

10.2 Algorithms

The segmentation algorithm and the registration algorithm have been discussed in
detail in [66] and (Chapter 9)respectively. For completeness, we will now briefly
discuss both algorithms, and shall describe any changes with respect to the original
methods.

10.2.1 Segmentation

The segmentation algorithm consists of three steps (Figure 10.2). First, seed points
are detected by finding the voxels that are subject to a few simple criteria: it must be
a local maximum, its intensity must be above a certain threshold value, and it must
have a direct neighbor that also has an intensity above the threshold value.

Next, a modified version of the minimum cost path (MCP) method [122] is applied
to find connections between the seed points. A front is grown from each seed point,

123



i
i

i
i

i
i

i
i

Chapter 10. A tool for studying the motion of stent grafts in AAA

3D image Graph ModelNodesDetect

seed points

Find

edges

Process
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Figure 10.2: Flow chart of the segmentation algorithm.

and two fronts meet, a connection is made and the optimal path between the seed
points is found. By choosing an appropriate cost function, the fronts can be made to
have a high affinity for the wire of the stent, such that the paths between the points
follow the wire frame of the stent graft. The result is a graph (in which the nodes are
the seed points) with a lot of connections.

In the third step of a series of graph processing operations are performed to clean
up the graph. Redundant edges are removed, and new nodes are placed at corners
and crossings. The final result is a graph that describes the wire frame of the stent
in a concise manner .

10.2.2 Registration
Groupwise image registration is the process of aligning multiple image with each-
other. A large amount of research is published on image registration, and it has been
applied to many practical problems. A major difficulty with image registration is that
the specific application determines to a large extent what algorithm and parameters
work best. Different algorithms can also behave differently when exposed to the same
image artifacts.

In the current work, four image registration algorithms are considered. The first
two are image driven algorithms based on the generic registration framework proposed
in Chapter 9:a diffeomorphic variant of the Demons algorithm (DDemons), and the
Gravity registration algorithm. The third and fourth algorithm are algorithms that
optimize the mean square error (MSE) (as used in [89]) and mutual information
(MI), respectively.1 Although the latter two algorithms do not produce diffeomorphic
deformations (i.e. do not guarantee a unique inverse), this in generally not to be a
problem in practice [89]. We chose to incorporate the MI algorithm because of its
promising results in a wide range of fields, even though it can currently not be used
for groupwise registration.

The Gravity algorithm is based on the idea of masses attracting one another. For
this purpose, a mass image is created, which has a sparsely distributed set of “objects”
in it. In the original approach this mass image was created by taking the gradient
magnitude, such that the algorithm is effectively based on the attraction of edges.
However, because the wire of the stent’s frame is relatively thin, we propose to use a
mass images based on the absolute of the Laplacian instead. This results in masses
on the wire instead of around them, and therefore causes less “cross-talk”. The mass
is calculated as follows:

Lmass = |Lxx + Lyy + Lzz|, (10.1)

where Lxx, Lyy and Lzz are the second order derivatives for x, y and z, respectively.
1For the MSE and MI algorithms we used the implementation that is freely available as part of

the Elastix toolkit: http://elastix.isi.uu.nl/
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T1

T2

T3

(a) From image space to
reference frame

(b) From reference frame
to image space

Figure 10.3: Schematic representation of the deformations in groupwise image regis-
tration. The outer circle represents the image space, an the inner circle the reference
frame. The deformations produced by a registration algorithm represent the mapping
from image space to reference frame (a), and can be used to describe a (continuous)
mapping to the image space (b).

10.2.3 Applying motion to the model

The deformation fields found by a registration algorithm describe how each image
should be deformed to make it match the shape of the reference shape, which is
in general the average shape of the original images (Figure 10.3a). Similarly, the
deformations can be used to describe how the reference frame should be deformed
to match the shape of any of the original images. By interpolating the deformation
fields (Chapter 9) it is also possible to map the reference frame in between the original
images (Figure 10.3b). In other words, the deformation fields describe the motion of
the reference frame as a continuous function. This property can be of value in applying
calculations to the motion field, and is allows the motion to be visualized in a smooth
fashion.

In order to use this information for quantitatively studying stent graft behavior,
the motion at the position of the stent (at the nodes of the geometric model) is cal-
culated from the deformation fields. This makes it possible to visualize the geometric
model in motion, and enables performing calculations on the now dynamic geometric
model. As the basis for estimating the forces that act on the frame of the stent, the
change of angle between two edges in the model can be calculate (Figure 10.1c).

10.3 Experimental methods and materials

In any experiment there is a trade-off between realism and availability of a (reliable)
ground truth. Therefore we performed a series of experiments on different kinds
of data: 1) artificial 2D images with artificial deformations; 2) data obtained by
scanning a phantom; 3) clinical data. In the first two experiments we tested the
performance of four different registration algorithms, and distortions were introduced
to test the robustness of these algorithms. In the third experiment we tested the
proposed algorithms by applying it to patient data.
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Figure 10.4: Example of the image used in the 2D experiments. The shown image
has 10% noise and the right image is deformed (damp = 20).

10.3.1 Experiments on 2D simulated data

An artificial image (256 × 256 pixels) was created containing lines in zigzag and
diamond shapes similar to some stent types (Figure 10.4). Random but known defor-
mations were applied to the images and the algorithms were applied to reconstruct
this deformation. The image and its deformed counterpart were distorted with 10%
zero-mean Gaussian distributed noise (i.e. the sigma of the Gaussian kernel was 10%
of the maximum value of the image). A series of 10 image-pairs was used as a training
set, and a series of 30 image-pairs was used as a test set.

The random deformations were calculated by randomly sampling 50 points inside
the image. From each point, a random vector was generated with a maximum length
of damp pixels. The value damp is a measure of deformation amplitude, and was
varied in the experiments. This description was then converted to a (diffeomorphic)
displacement field using a method similar to [77]. By setting the seed for the random
number generator before each experiment, the deformations could be repeated, such
that they were the same for each algorithm.

All algorithms were first tuned using the training set (with damp = 10) to find
the optimal parameters. Next, the experiments were performed on the test set, with
damp set to 5, 10 and 20. These experiment were repeated three times with different
distortions. For the first distortion we doubled the amount of Gaussian noise. For
the second distortion the intensities of the wire in the deformed image were decreased
with a factor 1

2 . For the third distortion a grid of horizontal and vertical lines (1 pixel
in width and positioned at every 6th pixel) was added to the deformed image. These
distortions have similarities with CT image artifacts such as noise, the partial vol-
ume effect and streak artifacts, and were introduced to test the robustness of the
algorithms.

10.3.2 Experiments on 3D phantom data

In order to obtain more realistic data with some form of a ground truth, an aorta
phantom was developed, consisting of a cylindrical perspex container, inside which
a rubber tube is fixated (Figure 10.5a). A stent was placed inside the rubber tube,
which has a larger diameter than that of the tube, such that in its natural state, the
tube compressed the stent. The container and the tube can both be filled with water,
but water cannot escape from the inside of the tube. This enables injecting extra
water inside the tube such that it inflates, allowing the stent diameter to increase.
Further, a perspex bar could be inserted via a hole at the top of the container, such
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(a) (b)

Figure 10.5: Example of the phantom used in the 3D experiments. Shown are a
photograph of the phantom (a) and a volume rendering of a scan containing the
phantom (b).

that the tube could be displaced (and thus deformed). The phantom was emerged in
a water bath with a width of approximately 50 cm.

The phantom was scanned using a Siemens Somatom 64-slice CT scanner (Siemens
Medical Solutions, Erlangen, Germany). A rotation time of 0.37 s, a pitch of 0.34,
and 2 × 32 × 0.6 mm 2 collimation were used. The tube voltage was 120 kVp. Each
volume was reconstructed using the B36f 245 reconstruction filter and resulted in
approximately 220 slices of 512 × 512 voxels. The slices (with a thickness of 2 mm)
were spaced 1 mm apart, and the resolution in the xy plane was approximately 0.5
mm. The resulting data were manually cropped to 200× 256× 256 voxels to reduce
the memory requirements.

The setup was scanned in nine different configurations, by scanning all possibilities
of three different pressures on the tube and three different bar displacements. For
each configuration, two scan were made with a tube current of 40 mAs and 600 mAs,
respectively. Special care was taken to prevent any displacement of the phantom in
between the different scans. The low exposure scan functions as a realistic scan to
perform the algorithms on. The high exposure scan functions as a reference to evaluate
the performance. Another three configurations were scanned with the introduction of
a metal bar in different positions to introduce metal artifacts.

The registration algorithms were used to deform one configuration (no inflation,
no bar) to the other configurations, using the scans of 40 mAs.

10.3.3 Experiments on 3D patient data

10.3.3.1 Materials

For the final experiment we used data obtained from 13 clinical cases (of 13 different
patients). The patients were threated with either the AneuRx (Medtronic, Minneapo-
lis, USA) or the Zenith (Cook, Bloomington, USA) stent graft. ECG-gated CT data
was used to obtain ten volumetric images, using the same scanner and settings as
in the phantom experiment. The effective tube current (per rotation) time product
was 180 mAs. Each volume resulted in approximately 300 slices of 512× 512 voxels.
Retrospective gating was applied to obtain ten (equal distant) cardiac phases. The
resulting data were manually cropped to 256×256×256 voxels to reduce the memory
requirements.

Next, the Gravity algorithm was used to register the different phases towards each-
other. This resulted for each dataset in 10 deformation fields that describe for each
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phase how it should be deformed to the reference frame. The deformation fields were
applied to the geometric models obtained with the segmentation algorithm. Next,
the maximum change of the angle between the edges was calculated for all nodes in
the model.

The dynamic model of the stent can be visualized interactively; the user can
inspect the model while it moves, using the mouse to zoom and view the model
from different directions. This allows the viewer to get a good understanding of the
geometry of the stent and its motion. The maximum angle change is displayed using
color.

10.4 Results

The tuning of the algorithm, as performed using the artificial 2D imaged and the 3D
phantom data, resulted in the set of parameters shown in Table 10.1.

For the 2D images registering one image pair took on average 2.1 s for the
DDemons and Gravity algorithms, and respectively 7.4 s and 12.0 s for the MSE and
MI algorithms. For the 3D images, registration took 20 min for DDemons, 7.5 min
for Gravity, 3.1 min for MSE, and 3.6 min for MI. For the clinical data, groupwise
registration took around 5 hours per case.

10.4.1 2D artificial data

To quantitatively evaluate the results of the experiments on the 2D data, the error
between the applied deformation and the found deformation was calculated. Because
we are only interested in the deformation at the lines, the error was evaluated at the
lines by masking it with the noiseless image. The results are shown in Figure 10.6.

10.4.2 3D phantom data

For the phantom experiments the quality of the deformation was measured by apply-
ing the found transformations to the corresponding scans of 600 mAs, and subtracting
the results. The sum of the absolute intensity error was divided by the sum of the
absolute intensity errors obtained by subtracting the un-registered scans. The results
are shown in Figure 10.7.

Because the metal bar (and the subsequent artifacts) causes large intensity differ-
ences between the images even if they would be perfectly aligned, these registration
result cannot be quantitatively evaluated with the above approach. Instead, the
results were evaluated qualitatively; Figure 10.8 shows the maximum intensity pro-
jections of the average of the two registered images. A good registration results in a
sharp image of the stent, while registration errors causes the two (misaligned) stents
to be visible.

10.4.3 Motion in 3D patient data

Since there is no ground truth available for the clinical data, the registration results
can only be visually inspected. In Figure 10.9 a slice is shown from a volume that
was obtained by registering the 10 phases of a dataset and then averaging them. By
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comparing the result to a slice from the volume obtained by only averaging the phases,
it can be seen that the motion artifacts are removed.

To show the motion in a 2D image, we divided the motion cycle in four phases and
show the motion vectors using lines overlaid on the geometric model. 2 Additionally,
we show an image of the geometric model with the maximum angle change displayed
using color. The results for eight datasets are shown in Figure 10.10 and Figure 10.11.

For reasons of space we show a selection of the datasets in the current work. Of
the cases not shown, there was one with no motion at all (case 4), two cases (case 6
and 8) that showed mainly distal motion, and two cases (case 7 and 9) that showed
an expanding motion.

In case 1 (Figure 10.10a) the body of the Zenith stent first expands, which seems
to pull the top of the stent in the second phase. The stent relaxes to its resting state in
the last two (diastolic) phases. Case 2 also shows a downward and expanding motion.
In fact, case 1 and case 2 are the same patient scanned at different times scanned
7 months apart. It can be seen that the motion pattern has changed slightly. More
interesting is that the forces acting on the stent seem to have reduced considerably.
The motion for case 3 is mainly in the lateral direction, resulting in the generation of
only small forces as the stent seems to move as a whole. For case 5 the small motions
result in a slight expanding of the stent (the movie shows this more clearly than the
2D motion image).

For the AneuRx stent graft in case 10 (Figure 10.11a) we can observe a relatively
complex motion consisting of motions in the transverse direction as well as in the
distal direction. This causes the stent to bend, resulting in local forces on the stent.
The motion for case 11 is mainly in the lateral direction, but there are local variations,
which seem to cause large forces at the upper part of the stent. In case 12 the motion
is mainly in the distal direction, but the body of the stent has a lateral motion as
well. The motion causes forces in the bend part of the stent. Case 13 shows mainly a
distal motion, but also contains large irregular motions, causing large angular changes
in different regions of the stent.

It can be seen that the motion of case 13 shows extreme dynamics compared to
the other datasets. This result is caused by noise bands that propagate through the
data (Figure 10.12), caused by the heart beat of this patient being too low during the
scan [62].

10.5 Discussion

10.5.1 Registration accuracy

From the results of Figure 10.6 it can be seen that for the synthetic data all algorithms
are capable of reconstructing the deformation with a mean error well below one pixel.
When the noise is increased, the error increases, but the relationship between the
algorithms remains approximately the same. When the intensity artifact was intro-
duced, this affected mainly the accuracy of the DDemons and MSE algorithms. The
lines artifact negatively affects all algorithms, although MI is clearly least affected and
DDemons the most. This can be explained by the fact that both the DDemons and
MSE algorithm operate on the intensities directly, making them more vulnerable to

2Movies that show the dynamics of the stent grafts in a more intuitive fashion are available at
http://www.sas.el.utwente.nl/home/almar/stents.html.
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#iters per Grid sampling Speed Number
scale level (smoothing) factor of samples
piters pgs pspeed psamples

2D images
DDemons 16 20 2.0 -
Gravity 16 20 2.0 -
MSE 200 20 - 211 (2048)
MI 200 20 - 211 (2048)

3D images
DDemons 16 20 2.0 -
Gravity 16 20 2.0 -
MSE 200 20 - 213(8192)
MI 200 20 - 213(8192)

Table 10.1: List of the parameters used in the experiments to register the different
types of images. See (Chapter 9)and [67] for an explanation of the parameters.

(a) 10% noise (b) 20% noise

(c) intensity artifact (d) grid artifact

Figure 10.6: Illustration of the mean deformation error for registering the artificial
2D images containing lines. The results are shown for a damp of 5, 10 and 20 pixels.
The dotted horizontal lines represent the error when the images are not registered
(for damp = 5).
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Figure 10.7: Illustration of the intensity error for registering the3D images with the
aorta phantom.

distortions. The Gravity and MI algorithms use the image intensities in a less direct
manner, which makes them more robust for variation in the intensities between the
images (Chapter 9). The MI algorithm is particularly robust, probably because it uses
an optimization strategy rather than using the pixel data to drive the registration.

The reliability of the ground truth for the phantom experiments is subject to dif-
ferences in the reference images caused by image artifacts. By scanning the reference
images with a high dose, this effect was minimized. From Figure 10.7 it can be seen
that on the phantom data the DDemons and MSE algorithms perform significantly
worse than the Gravity and MI algorithms. Similarly, Figure 10.8 shows that all al-
gorithms suffer from the introduction of a metal bar, but that the Gravity and MI
algorithm are much less affected than the other algorithms. Both results show that
MI performs better than the Gravity algorithm.

We conclude that of the four registration algorithms tested the Gravity and MI
algorithm perform sufficiently for our needs. The results show that MI performs better
than the Gravity algorithm, but unfortunately a groupwise registration algorithm
based on MI is currently not available. The reason for this might be that MI is
fundamentally pairwise in nature [87]. With the groupwise framework proposed in
this work, however, this should not be a problem. It would therefore be interesting
for future research to realize a groupwise MI-based algorithm. We expect that other
registration approaches, such as mutual information combined with gradient data
(e.g. [95]) may produce good results as well.

10.5.2 Speed

We found that the MSE and MI algorithm perform slower on 2D data, but faster on
3D data. This is because these algorithms use a sampling strategy to avoid calculating
the similarity measure for every element (i.e. pixel/voxel). The number of samples
had to be increased in the 3D case to get reasonable results (last row of Table 10.1),
but this increase was much less than the increase in the amount of elements.

Since the DDemons and Gravity algorithms can be parallelized well, we expect
that their speed can be improved significantly by using a multi-threaded approach or
using GPU-based techniques. This is subject for future research.
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(a) No metal bar

(b) Metal bar perpendicular to the stent

(c) Metal bar parallel to the stent

Figure 10.8: Maximum intensity projections of registered data under the influence of
a strong metal artifact.
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Figure 10.9: Comparison of averaging the ten volumes using registration (left) and
without (right). Motion artifacts are clearly visible in the right image.

10.5.3 Deformation amplitude and grid spacing

Every image registration algorithm uses a form of regularization, and consequently,
there is always a trade-off between this amount of regularization and the complexity of
the deformations that can be modeled. For the four registration algorithms described
in this work, the regularization is controlled by the grid sampling parameter pgs, which
specifies the spacing between the knots of the final B-spline grid [113, 101]. A smaller
value allows more variation in the deformation, at the cost of decreased regularization.
It can be seen from the 2D experiment results (Figure 10.6) that the error increases as
the deformation amplitude is increased. The error for damp = 20 is particularly large,
which can be attributed to the fact that the algorithms were trained with damp = 10;
the deformations were too complex to be appropriately modeled with the used grid
sampling. To reduce this error, the grid sampling will have to be decreased, but due
to the reduced regularization, this would cause the error for the smaller amplitudes
to increase.

This illustrates the importance of choosing the right amount of regularization; it
should be chosen as high as possible, but not too high, since this would constrain
the possible transformation too much. To chose a suitable value, one can estimate
it from the expected range of deformations. Unfortunately these are often unknown
in practice. In the phantom experiments we could quantitatively determine that the
grid spacing value was optimal at 20 mm, and this worked for the patient data as
well. When we tried to reduce the value to 10 mm we found that the deformations
became inaccurate because they were not sufficiently constrained.

The effects of the amount of regularization with respect to the kind of deformations
found in patient data should be investigated further.

10.5.4 Volume gaps

The erroneous extreme dynamics seen in case 14 are caused by “volume gaps” where
no data is defined for a particular space and time [62]. The scanner attempts to restore
the data via a form of interpolation, which causes the stent to be represented in a
wrong way. Because the registration algorithm tries to match the shape of this wrongly
represented data, the deformation fields contain locally extreme deformations.

Therefore, for the proposed method to work well it is crucial that these volume
gaps are avoided by preventing the patient’s heart beat to fall below the crucial value
(see [62] how this can can be calculated).
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(a) case 1

(b) case 2

(c) case 3

(d) case 5

Figure 10.10: Illustration of stent motion measured for 4 cases treated with the Zenith
stent graft. The motion is represented using vectors (amplified five times) in four
phases. The image on the right shows the change of angle between the edges (in
degrees).
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(a) case 10

(b) case 11

(c) case 12

(d) case 13

Figure 10.11: Illustration of stent motion measured for 4 cases treated with the
AneuRx stent graft. The motion is represented using vectors (amplified five times) in
four phases. The image on the right shows the change of angle between the edges (in
degrees).
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Figure 10.12: Illustration of the noise bands present in the data for case 13.

10.5.5 Patient data

The general tendency observed for the motions in the different patients is a distal
and or lateral motion, sometimes accompanied by an expanding body, followed by a
slow returning to the resting state (diastolic phase). Depending on the geometry of
the stent, the motion can result in forces, mainly at bends and the bifurcation (e.g.
case 2, 5, 10, 12). Nevertheless, there are also rather large differences between the
observed motions; some datasets have very little or no motion, some are mainly in the
distal direction, and some show a more expanding motion in the transversal plane. To
what extent these differences are significant for the prediction stent related problem
remains to investigated.

The calculated angle changes are an indication of the force present at that location.
For genuine force calculations, one would have to take into account the length and
diameter of the wires, as well as the material properties. We also observed that in
cases where the segmentation contained an error (e.g. an extra node) the angular
change was sometimes very high. Because this occurs very locally (see for example
the top left of case 5) these errors can usually be recognized. Nevertheless, the effect
of errors in the segmentation on the force calculations should be investigated as well.

The used registration algorithm was carefully selected and evaluated for data
containing stent grafts. Nevertheless, the resulting deformation fields are an approx-
imation and may contain errors. Further research is required to study (and possibly
improve) the robustness of the registration algorithm.

10.6 Conclusions and future work

We performed experiments to compare four different registration algorithms on data
containing stent grafts. Further, we used the best method to find the motions in
data acquired from 13 different cases. By applying these motions to the geometric
model of the stent, a dynamic model was obtained which enables visualization and
calculations of the motions of the stent. The motions show mainly distal motions
and expanding motions in the transversal plane. Additionally, we showed the change
of the angles between the edges in the model, which are an indication of the forces
acting on the stent. These show that depending on the geometry of the stent, similar
motion patterns can result in different force distributions.

These results give a glimpse of the possibilities that this new source of information
can provide. The proposed method should therefore be seen as a tool that enables
further research to the behavior of stent grafts in vivo. It could, for instance, enable
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studying the motion patterns of individual patients, relate them to data of a previous
date, or relate them to the motion patterns of other patients. It would also be
interesting to study the range of motion patterns of stent grafts in patients without
problems, and compare them to the motions in patients who do have problems. Such
studies would, however, require large datasets to incorporate all the variabilities in
motion patterns, particularly because problems with stent grafts are relatively rare.
Nevertheless, we believe that such studies can help our understanding of the dynamics
and failure of stent grafts, and can thereby help in designing better stent grafts in the
future. Further, we hope that we are able to correlate certain distinct motion patterns
to specific stent-related problems, so that this technique can be used for diagnostic
purposes and prediction of stent failure.
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This thesis presents a method that enables quantitative measurements of the motions
of stent grafts from ECG-gated CT data. The proposed method consists of two parts.
In the segmentation part the stent is detected from the data and a geometric model
is produced that explicitly describes the topology of the stent. In the registration
part the deformation field of the data is calculated and used to apply motion to
the geometric model. Further, the applicability of ECG-gated CT for measuring the
motions of stent grafts in AAA was studied.

11.1 Conclusions
We shall now answer the research questions that were posed in the introduction.

Is the data obtained with ECG-gated CT suitable for measuring the mo-
tions expected for stent grafts in AAA?

In Chapter 3 we performed several experiments to investigate the various aspects of
this question. We have found that we can measure motions with frequency compo-
nents up to 2.7 Hz, and with amplitudes from 0.4 mm and 0.7 mm in x/y-direction
and z-direction, respectively. This is (just) sufficient for the intended purpose. It
was also found that volume gaps occur if the patient’s heart rate is below 55 BPM.
The data inside these volume gaps is unreliable, and can cause severe misregistration
(Chapter 10). This problem should therefore be avoided by preventing the patient’s
heartbeat to go below 55 BPM if possible.

Can ECG-gated CT replace the regular CT study that patients currently
have, without any negative effects on the clinical procedure?

Averaging of the multiple volumes obtained by ECG-gated CT results in a volume
with frequency and noise properties that are very similar to those of the single volume
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obtained by a regular CT scan (Chapter 4). It was also shown that the artifacts due
to motion appear as blurring.

It should be noted that an ECG-gated CT scan requires the patient to hold his/her
breath longer than for a regular CT scan. If the patient is unable to hold his/her
breath that long, the exhaling might cause motion artifacts. By scanning in distal
direction, this effect can be minimized.

Can we segment the stent graft from these (noisy) data, and with what
accuracy?

Yes, although this problem proofed to be harder than was anticipated. Our first
approach was to segment the stent in 2D slices while tracking along the centerline of
the stent. Although segmentation of the stent in the 2D slices was quite successful
(Chapter 5), the subsequent tracking turned out to be difficult due to the fundamental
limitations of the approach (Chapter 6). To overcome these problems we have worked
on a method that works directly in 3D. The second approach consists of a method
in which many wire-parts are tracked simultaneously (Chapter 7). This approach
was found to work the best using the MCP method for the tracking. Because we
anticipated problems with connecting the different wire-parts being tracked, the third
(final) approach uses the MCP method to connect a set of seed points (Chapter 8).

The result of the segmentation algorithm is a geometric model in the form of a
graph consisting of nodes connected by edges. The nodes are placed at the corners
and crossings of the stent’s frame and the edges represent the wires.

We have demonstrated (in Chapter 8) that the final method has a 95% and 92%
correspondence with expert annotations for the AneuRx and Zenith stent type, re-
spectively. It should be noted, however, that because annotating bifurcations is very
difficult, the performance was only measured at the tubular parts of the stents.

Is it possible to measure the motion of the stent graft from these data,
and with what accuracy?

Yes, by applying image registration the deformation field between the images can
be found. This can then be used to obtain a dynamic stent model by incorporating
the motion in the geometric model. Since we are dealing with multiple images, it
is of importance to use an algorithm that registers the images simultaneously (i.e.
groupwise). Therefore it is crucial that the deformations are invertible, which can be
guaranteed by ensuring that the deformations are diffeomorphic. We have designed
a registration algorithm that has these properties, and which is generic enough to
allow different “forces” to drive the registration progress (Chapter 9). This allows us
to select a force which is robust for the image artifacts present in CT data, and also
produces accurate results—which is important because the motions of interest are
relatively small.

A ground truth for the motion of the stent grafts is not available, making quantita-
tive analysis of the accuracy difficult. Nevertheless, we were able to compare different
registration algorithms and select the one with the best accuracy and robustness. The
experiments suggest that the proposed Gravity algorithm is sufficient for our needs.
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What kind of motions do stent grafts make inside the human body?

For the patients that participate in this study we are able to quantitatively measure
the motions of the stent graft (Chapter 10). We have found that the general tendency
is a distal motion and/or expanding motion, followed by a slow return to the resting
state (diastolic phase). Additionally, we show the change of the angles between the
edges in the stent model, which are an indication of the forces acting on the stent.
These show that depending on the geometry of the stent, similar motion patterns can
result in different force distributions. There are also rather large differences between
the observed motions; some datasets have very little or no motion, some are mainly
in the distal direction, and some show a more expanding motion in the transverse
plane.

To be able to get real insight in these motions, and to draw relations with stent-
related problems, much more patients should be studied. We now have the tools to
do this in a highly automated manner.

11.2 Recommendations

Using the registered volumes to create an average volume

A single volume is currently generated by averaging the multiple 3D images. This
volume is then used in the clinical procedure. Similarly, a single volume is created to
which the segmentation algorithm is applied. In the latter case, only a subset of the
volumes is used, because that proofed to be a better compromise between noise and
motion artifacts (Chapter 7).

By registering the different volumes to a mean shape before averaging (as discussed
in Chapter 9), we expect to remove the motion artifacts almost completely. This is
beneficial for the clinic, and might also improve the segmentation results.

Improvements for the segmentation algorithm

Although the segmentation algorithm produces relatively accurate results, the errors
that are made can have a significant effect on the estimation of forces. To what extent
this is a problem should be investigated.

We believe that the most significant improvements for the current segmentation
algorithm can be achieved by improving the graph processing. Although the rules
for cleaning up the graph are relatively clear, the order in which these are applied
can affect the outcome. Instead of doing the processing in a fixed amount of steps,
it might be better to adopt a more gradual approach by repeatedly applying a set of
operations, where each operation has only an infinitesimally chance of introducing an
error.

Improvements for the registration algorithm

In Chapter 10 we also show that an algorithm that uses mutual information might
provide better results than the Gravity algorithm, but unfortunately this algorithm
can currently not be used in a groupwise setting. It is therefore interesting to im-
plement a registration-force based on mutual information that can be used with the
generic registration algorithm proposed in Chapter 9.
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Although the parameters of the registration algorithm can be tuned in a controlled
experiment, this is often not the case for real-world data. In Chapter 10 we have tried
to solve this by tuning the parameters in a series of experiments of increasing realism.
It would be interesting to see the effect of the parameters on the estimated motion in
patient data, particularly for the "grid spacing" parameter, as it limits the complexity
of the motions that can be modeled.

Further, the speed of the registration algorithm can be improved by implementing
it on the GPU. The Demons and Gravity algorithms are expected to be particularly
easy to parallelize.

Understanding stent dynamics

The proposed method should be seen as a tool that enables further research to the
behavior of stent grafts in vivo. It can, for instance, enable studying the motion
patterns of individual patients, relate them to data of a previous date, or relate them
to the motion patterns of other patients. It is also interesting to study the range of
motion of failing stent grafts, and compare them to the motions in patients without
problems. Such studies, however, should be performed on large patient populations
in order to incorporate all the variabilities in motion patterns, particularly because
problems with stent grafts are relatively rare. Nevertheless, we believe that such
studies can help our understanding of the dynamics and failure of stent grafts, and
can thereby help in designing better stent grafts in the future. Further, we hope
that we are able to correlate certain distinct motion patterns to specific stent-related
problems, so that this technique can be used for diagnostic purposes and prediction
of stent failure.
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Summary

Patients with an Abdominal Aortic Aneurysm (AAA) have a high risk of dying due to
the rupture of a dilated aorta. Endovascular aneurysm repair (EVAR) is a technique
to threat AAA, by which a stent graft prosthesis is implanted in the aorta of the
patient, which takes the pressure off the aneurysm wall. Due to its minimal invasive
character, this intervention has smaller risks for the patient compared to the con-
ventional approach (in which the unhealthy aorta is replaced with an artificial vessel
using open surgery).

Yielding good results on the short term, this technique has increased in popularity.
Unfortunately, due to effects such as metal fatigue, leakage and stent migration, this
technique is less successful on the long term. These problems are caused by the
forces applied by the pressure waves of the blood flow. It is therefore important to
understand the motion behavior of the stent graft inside the human body. This idea
is the main motivation for the research described in this thesis.

The technique of ECG-gated CT can be used to obtain multiple 3D images of
the patient. Each of these images corresponds to a different phase of the heart cy-
cle. Therefore this technique enables measuring motions inside the patient. We have
performed experiments to study the possibilities and limitations for using this tech-
nique to measure the motions of interest. We concluded that this technique is indeed
suitable to study the motions of stent grafts in AAA.

Having obtained the set of 3D images, the goal is to measure the motions of the
stent graft. This is done in two steps. The first is segmentation: detecting where
the stent is located and subsequently creating a geometric model of the stent. This
geometric model is represented as a graph consisting of nodes that are connected by
edges. The nodes represent the corners and crossings in the stent’s frame, and the
edges represent the wires in between. The second step is registration, by which the
deformation between the different images is calculated.

Our first attempted segmentation approach was to sample 2D slices (orthogonal
to the centerline of the stent) from the 3D images. The points where the metal frame
penetrates the slice are then detected. By repeating this process while tracking along
the centerline of the stent, a model of the stent can be obtained. Unfortunately,
we encountered many problems with the tracking part of this method related to
bifurcations and overlapping parts of the stent. To overcome these problems, we
decided to work on an approach to segment the stent directly in 3D. First, a set of
seed points is detected in the 3D image, based on a few simple criteria. These points
are connected to each other using a modified version of the minimum cost path (MCP)
method, which is an algorithm that tries to find the optimal route between two or
more points. This results in a graph with many edges, which is processed to obtain
the final geometric model of the stent.

Next is the registration step, in which the deformation fields between the different
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SUMMARY

3D images are calculated. For this purpose we developed a groupwise registration
method which ensures that the transformation fields do not fold. The motion of
the stent is determined from the deformation fields and incorporated in the geometric
stent model. The obtained dynamic model can be used for visualization of the motion
of the stent, as well as for performing further calculations such as estimating the forces
in the stent.

Clearly, the proposed method is just a small step on the road to better care for
patients with AAA. The method should be seen as a tool that enables further quan-
titative research to motions of stent grafts. These studies will provide new insights in
the behavior of the stent graft in vivo. We expect that this will enable the detection
and prediction of stent failure in individual patients, and can help in designing better
stent grafts in the future.
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Samenvatting

Patiënten met een abdominaal aneurysma in de aorta (AAA) hebben een grote kans
te overlijden aan het scheuren van een uitgerekt bloedvat. Met een techniek die
EVAR genoemd wordt, kan AAA behandeld worden. Hierbij wordt een stent graft
prothese geïmplanteerd in de aorta van de patiënt. Deze stent neemt de druk van de
aortawand weg. Dankzij zijn minimaal invasieve karakter brengt deze operatietechniek
een kleiner risico met zich mee dan de conventionele techniek (waarbij de beschadigde
aorta wordt vervangen door een kunstvat door middel van open chirurgie).

Door zijn goede resultaten op de korte termijn heeft EVAR de laatste tijd flink
aan populariteit gewonnen. Echter, door verschijnselen als metaalmoeheid, lekken
en migratie van de stent, is de techniek minder succesvol op de lange termijn. Deze
problemen vinden hun oorzaak in de krachten die ontstaan door de drukgolven van
de bloedstroom. Om deze reden is het van belang om het bewegingsgedrag van de
stent graft in de patiënt beter te begrijpen. Dit is de achterliggende gedachte voor
het onderzoek beschreven in dit proefschrift.

De techniek ECG-gated CT kan worden gebruikt om meerdere 3D beelden van de
patiënt te verkrijgen. Elk van deze beelden correspondeert met een verschillende fase
van de hartcyclus. Zo maakt deze techniek het mogelijk bewegingen in de patiënt
te meten. Uitgaande van de bewegingen waarin wij geïnteresseerd zijn, hebben
wij experimenteel onderzoek verricht om de mogelijkheden en beperkingen van deze
techniek in kaart te brengen. We konden concluderen dat deze techniek inderdaad
geschikt is om de bewegingen van stent grafts in AAA te onderzoeken.

Het doel is om uit deze set van 3D beelden de bewegingen van de stent graft
te meten. Dit doen we in twee stappen. De eerste stap is segmentatie. Dit is
het detecteren van de stent om vervolgens een geometrisch model van de stent te
genereren. Dit geometrische model wordt gerepresenteerd met een graaf bestaande uit
nodes en verbindingen. De nodes representeren de bochten en kruisingen in het frame
van de stent, en de verbindingen representeren de draden daartussen. De tweede stap
is registratie, waarbij de vervorming tussen de verschillende beelden wordt berekend.

Onze aanvankelijke segmentatie methode was erop gericht 2D plakken (loodrecht
op de middellijn van de stent) uit de 3D beelden te halen. De punten waar het metalen
frame de plak doorkruist worden vervolgens gedetecteerd. Door dit te herhalen terwijl
de middellijn van de stent gevolgd wordt, kan een model van de stent verkregen
worden. Echter, wij kwamen bij deze methode veel problemen tegen met betrekking
tot splitsingen en overlappende delen in de stent. Om deze problemen het hoofd
te bieden is besloten om te werken aan een methode die direct in 3D werkt. Eerst
wordt er in het 3D beeld een set van “beginpunten” gevonden op basis van enkele
simpele criteria. Deze punten worden vervolgens verbonden door middel van een
aangepaste versie van de MCP (minimale kosten pad) methode. Deze methode vindt
de optimale route tussen twee of meerdere punten. Het resultaat is een graaf met veel
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verbindingen, welke wordt opgeschoond om uiteindelijk het geometrische model van
de stent te verkrijgen.

In de registratie stap worden de vervormingsvelden tussen de verschillende 3D
beelden berekend. Hiervoor hebben wij een registratie algoritme ontwikkeld om
meerdere beelden tegelijk te kunnen registreren, op een manier die “vouwen” in de
vervormingsvelden vermijdt. Uit de vervormingsvelden wordt de beweging van de
stent bepaald, die we vervolgens in het stent model incorporeren. Het verkregen
dynamische model kan worden gebruikt om de beweging van de stent te visualiseren,
alsmede om verdere berekenen te doen zoals het schatten van de krachten in de stent.

Het is duidelijk dat de voorgestelde methode nog maar een kleine stap is op weg
naar een betere behandelmethode voor de patiënten. De methode moet worden gezien
als een hulpmiddel dat het mogelijk maakt om kwantitatief onderzoek te doen naar de
bewegingen van stent grafts. Dergelijk onderzoek zal leiden tot nieuwe inzichten in het
gedrag van stent grafts. Wij verwachten dat dit vervolgens de detectie en voorspelling
van stent falen in individuele patiënten mogelijk zal maken, en in de toekomst kan
helpen bij het ontwerpen van betere stent grafts.
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